Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article introduces a new modeling approach aimed at examining how the performance of a rotor-bearing housing system is influenced by the flexibility of the rotor and support structures. The system is composed of a flexible rotor and rolling element bearings (REBs) positioned within flexible housings. The dynamics of the REBs were simulated using a previously developed adams dynamic bearing model (DBM) using the discrete element method (DEM) in the msc adams environment. To achieve an integrated rotor-bearing housing system model, the adams bearing model was coupled through a set of interface points using component mode synthesis (CMS) for the rotor and housing model. The bearing outer races were discretized into multiple nodes to compute the force and deformation at the bearing housing conformal contact as well as to minimize the computational requirements associated with the conformal contact problems. The integrated model was then utilized to investigate the effects of rotor flexibility in the bearing rotor system and the effect of bearing clearance and housing clearance on bearing dynamics. Previously developed Pressure Mapping Test Rig (PMTR) and Spherical Roller Bearing Test Rig (SRBTR) were used to validate the results and assumptions made in this study. The model developed demonstrated that the flexibility of the rotor has a significant effect on bearing element motion and dynamics. The results also indicate that depending on the bearing type, the shaft deflection can induce a moment within the bearing that is not readily available from elementary theory. The results show that the flexible housing undergoes deformations that create ovality in the bearing housing, thus affecting bearing dynamics. The model was also used to investigate bearing performance in a miniature wind turbine main shaft, utilizing a combination of spherical roller bearing (SRB) and cylindrical roller bearing (CRB) adams models. Results suggest that the axial-to-radial load ratio should be less than the tangent of the SRB contact angle to avoid premature failure due to rollers sliding in the SRB as well as detrimental parallel misalignment in the CRB.

References

1.
Berberian
,
P.
,
2024
, “
Wind Turbine Alignment Challenges
,” https://www.pumpsandsystems.com/wind-turbine-alignment-challenges.
2.
2018
, Advanced Bearing Solution for the Wind Industry, NSK Inc. https://www.nskamericas-literature.com/en/bearings-for-wind/.
3.
Hart
,
E.
,
Clarke
,
B.
,
Nicholas
,
G.
,
Kazemi Amiri
,
A.
,
Stirling
,
J.
,
Carroll
,
J.
,
Dwyer-Joyce
,
R.
,
McDonald
,
A.
, and
Long
,
H.
,
2020
, “
A Review of Wind Turbine Main Bearings: Design, Operation, Modelling, Damage Mechanisms and Fault Detection
,”
Wind Energy Sci.
,
5
(
1
), pp.
105
124
.
4.
Jones
,
A. B.
,
1960
, “
A General Theory for Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary Load and Speed Conditions
,”
ASME J. Basic Eng.
,
82
(
2
), pp.
309
320
.
5.
Harris
,
T. A. A.
,
2001
,
Rolling Bearing Analysis
,
John Wiley and Sons
,
Hoboken, NJ, USA
.
6.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings Part III: Ball Bearing Results
,”
ASME J. Tribol.
,
101
(
3
), pp.
319
326
.
7.
Gupta
,
P. K.
,
1984
,
Advanced Dynamics of Rolling Elements
,
Springer
,
New York, NY, USA
.
8.
Saheta
,
V.
,
2001
, “
Dynamics of Rolling Element Bearings Using the Discrete Element Method
,”
MS thesis
,
Purdue University
,
West Lafayette, IN, USA
.
9.
Jeffcott
,
H. H.
,
1919
, “
XXVII. The Lateral Vibration of Loaded Shafts in the Neighbourhood of a Whirling Speed – The Effect of Want of Balance
,”
Philos. Mag. J. Sci.
,
37
(
219
), pp.
304
314
.
10.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1990
, “
Bifurcation Analysis for a Modified Jeffcott Rotor With Bearing Clearances
,”
Nonlinear Dyn.
,
1
(
3
), pp.
221
241
.
11.
Lund
,
J. W.
,
1974
, “
Stability and Damped Critical Speeds of a Flexible Rotor in Fluid-Film Bearings
,”
ASME J. Eng. Ind.
,
96
(
2
), pp.
509
517
.
12.
Bansal
,
P. N.
, and
Kirk
,
R. G.
,
1975
, “
Stability and Damped Critical Speeds of Rotor-Bearing Systems
,”
ASME J. Eng. Ind.
,
97
(
4
), pp.
1325
1332
.
13.
Adams
,
M. L.
,
1980
, “
Non-Linear Dynamics of Flexible Multi-Bearing Rotors
,”
J. Sound Vib.
,
71
(
1
), pp.
129
144
.
14.
Lim
,
T. C.
, and
Singh
,
R.
,
1990
, “
Vibration Transmission Through Rolling Element Bearings, Part I: Bearing Stiffness Formulation
,”
J. Sound Vib.
,
139
(
2
), pp.
179
199
.
15.
Lim
,
T. C.
, and
Singh
,
R.
,
1990
, “
Vibration Transmission Through Rolling Element Bearings, Part II: System Studies
,”
J. Sound Vib.
,
139
(
2
), pp.
201
225
.
16.
Hendrikx
,
R.
,
Van Nijen
,
G. C.
, and
Dietl
,
P.
,
1999
, “
Vibrations in Household Appliances With Rolling Element Bearings
,”
Proceedings of the International Seminar on Modal Analysis, Katholieke Universiteit Leuven
,
Leuven, Belgium
, pp.
1537
1544
.
17.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
,
2000
, “
Dynamic Response of an Unbalanced Rotor Supported on Ball Bearings
,”
J. Sound Vib.
,
238
(
5
), pp.
757
779
.
18.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
,
2000
, “
Effect of Radial Internal Clearance of a Ball Bearing on the Dynamics of a Balanced Horizontal Rotor
,”
J. Sound Vib.
,
238
(
5
), pp.
723
756
.
19.
Stacke
,
L.-E.
,
Fritzson
,
D.
, and
Nordling
,
P.
,
1999
, “
BEAST – A Rolling Bearing Simulation Tool
,”
Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn.
,
213
(
2
), pp.
63
71
.
20.
Stacke
,
L.-E.
, and
Fritzson
,
D.
,
2001
, “
Dynamic Behaviour of Rolling Bearings: Simulations and Experiments
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
215
(
6
), pp.
499
508
.
21.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
,
1976
, “
The Dynamics of Rotor-Bearing Systems Using Finite Elements
,”
ASME J. Eng. Ind.
,
98
(
2
), pp.
593
600
.
22.
Gupta
,
T. C.
,
Gupta
,
K.
, and
Sehgal
,
D. K.
,
2011
, “
Instability and Chaos of a Flexible Rotor Ball Bearing System: An Investigation on the Influence of Rotating Imbalance and Bearing Clearance
,”
ASME. J. Eng. Gas Turbines Power
,
133
(
8
), pp.
2501
2511
.
23.
Rao
,
J. S.
, and
Sreenivas
,
R.
,
2003
, “
Dynamics of a Three Level Rotor System Using Solid Elements
,”
Turbo Expo: Power for Land, Sea, and Air
,
Atlanta, GA
,
June
, pp.
601
606
.
24.
Ashtekar
,
A.
, and
Sadeghi
,
F.
,
2011
, “
Experimental and Analytical Investigation of High Speed Turbocharger Ball Bearings
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
122501
.
25.
Brouwer
,
M. D.
,
Sadeghi
,
F.
,
Ashtekar
,
A.
,
Archer
,
J.
, and
Lancaster
,
C.
,
2015
, “
Combined Explicit Finite and Discrete Element Methods for Rotor Bearing Dynamic Modeling
,”
Tribol. Trans.
,
58
(
2
), pp.
300
315
.
26.
Nicholas
,
J. C.
, and
Barrett
,
L. E.
,
1986
, “
The Effect of Bearing Support Flexibility on Critical Speed Prediction
,”
ASLE Trans.
,
29
(
3
), pp.
329
338
.
27.
Vance
,
J. M.
,
Murphy
,
B. T.
, and
Tripp
,
H. A.
,
1987
, “
Critical Speeds of Turbomachinery: Computer Predictions vs. Experimental Measurements – Part II: Effect of Tilt-Pad Bearings and Foundation Dynamics
,”
J. Vib. Acoust. Stress Reliab
,
109
(
1
), pp.
8
14
.
28.
Vázquez
,
J. A.
,
Barrett
,
L. E.
, and
Flack
,
R. D.
,
2001
, “
A Flexible Rotor on Flexible Bearing Supports: Stability and Unbalance Response
,”
ASME J. Vib. Acoust.
,
123
(
2
), pp.
137
144
.
29.
Cao
,
L.
,
Brouwer
,
M. D.
,
Sadeghi
,
F.
, and
Stacke
,
L.-E.
,
2015
, “
Effect of Housing Support on Bearing Dynamics
,”
ASME J. Tribol.
,
138
(
1
), p.
011105
.
30.
Cao
,
L.
,
Sadeghi
,
F.
, and
Stacke
,
L.-E.
,
2016
, “
An Explicit Finite-Element Model to Investigate the Effects of Elastomeric Bushing on Bearing Dynamics
,”
ASME J. Tribol.
,
138
(
3
), p.
031104
.
31.
Cao
,
L.
,
Sadeghi
,
F.
, and
Stacke
,
L.-E.
,
2017
, “
A Combined EFEM–Discrete Element Method Dynamic Model of Rotor–Bearing–Housing System
,”
ASME J. Tribol.
,
139
(
6
), p.
061102
.
32.
Prenger
,
N.
,
2003
, “
Modeling the Dynamics of Rolling Element Bearings Using ADAMS
,”
MS thesis
,
Purdue University
,
West Lafayette, IN
.
33.
Shafiee
,
A.
,
Russell
,
T.
,
Sadeghi
,
F.
, and
Wilmer
,
M. G.
,
2022
, “
Analytical Investigation of Roller Skew and Tilt in a Spherical Roller Bearing
,”
ASME J. Tribol.
,
144
(
7
), p.
071201
.
34.
Shafiee
,
A.
,
Russell
,
T.
,
Lorenz
,
S. J.
,
Sadeghi
,
F.
, and
Wilmer
,
M. G.
,
2023
, “
Optical Measurement of Roller Slip, Tilt, and Skew in a Spherical Roller Bearing
,”
ASME J. Tribol.
,
145
(
4
), p.
044302
.
35.
Pechstein
,
A.
,
Reischl
,
D.
, and
Gerstmayr
,
J.
,
2012
, “
A Generalized Component Mode Synthesis Approach for Flexible Multibody Systems With a Constant Mass Matrix
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
1
), p.
011019
.
36.
Russell
,
T.
,
Shafiee
,
A.
,
Conley
,
B.
, and
Sadeghi
,
F.
,
2022
, “
Evaluating Load Distribution at the Bearing-Housing Interface Using Thin Film Pressure Sensors
,”
Tribol. Int.
,
165
, p.
107293
.
37.
Sakaguchi
,
T.
, and
Harada
,
K.
,
2006
, “
Dynamic Analysis of Cage Behavior in a Tapered Roller Bearing
,”
ASME J. Tribol.
,
128
(
3
), pp.
604
611
.
38.
Craig
,
R. R.
, and
Bampton
,
M. C.
,
1971
, “
Coupling of Substructuring for Dynamic Analysis
,”
AIAA J.
,
6
(
7
), pp.
6
7
.
40.
Sellgren
,
U.
“Component Mode Synthesis—A Method for Efficient Dynamic Simulation of Complex Technical Systems.” https://www.vibrationdata.com/tutorials_alt/CMS_wp5.pdf.
41.
Wilmer
,
M. G.
,
2023
, “Timken Sponsorship Communication.”
42.
Kang
,
Y. S.
,
Evans
,
R. D.
, and
Doll
,
G. L.
,
2010
, “
Roller-Raceway Slip Simulations of Wind Turbine Gearbox Bearings Using Dynamic Bearing Model
,”
International Joint Tribology Conference
,
San Francisco, CA
,
October
, pp.
407
409
.
43.
Russell
,
T.
,
Sadeghi
,
F.
,
Kang
,
Y. S.
, and
Mazzitelli
,
I.
,
2024
, “
The Influence of Cage Pocket Lubrication on the Simulation of Deep Groove Ball Bearing Cage Motion
,”
ASME J. Tribol.
,
146
(
2
), p.
022201
.
44.
Weinzapfel
,
N.
, and
Sadeghi
,
F.
,
2009
, “
A Discrete Element Approach for Modeling Cage Flexibility in Ball Bearing Dynamics Simulations
,”
ASME J. Tribol.
,
131
(
2
), p.
021102
.
45.
Ashtekar
,
A.
, and
Sadeghi
,
F.
,
2012
, “
A New Approach for Including Cage Flexibility in Dynamic Bearing Models by Using Combined Explicit Finite and Discrete Element Methods
,”
ASME J. Tribol.
,
134
(
4
), p.
041502
.
46.
Ashtekar
,
A.
,
Sadeghi
,
F.
, and
Stacke
,
L. E.
,
2008
, “
A New Approach to Modeling Surface Defects in Bearing Dynamics Simulations
,”
ASME J. Tribol.
,
130
(
4
), p.
041103
.
47.
Ghaisas
,
N.
,
Wassgren
,
C. R.
, and
Sadeghi
,
F.
,
2004
, “
Cage Instabilities in Cylindrical Roller Bearings
,”
ASME J. Trib.
,
126
(
4
), pp.
681
689
.
48.
Hamrock
,
B. J.
,
Schmid
,
S.
,
Jacobson
,
B. O.
,
Schmid
,
B. J.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
CRC Press
,
Boca Raton, FL
.
49.
Houpert
,
L.
,
1987
, “
Piezoviscous-Rigid Rolling and Sliding Traction Forces, Application: The Rolling Element–Cage Pocket Contact
,”
ASME J. Tribol.
,
109
(
2
), pp.
363
370
.
50.
Houpert
,
L.
,
1984
, “
The Film Thickness in Piezovicsous Rigid Regime; Film Thickness Lubrication Regimes Transition Criteria
,”
ASME J. Tribol.
,
106
(
3
), pp.
375
381
.
51.
Ghaisas
,
N. V.
,
2003
, “
Dynamics of Cylindrical and Tapered Roller Bearings Using the Discrete Element Method
,” Master sci. thesis,
Purdue University
,
West Lafayette, IN
.
52.
Khonsari
,
M. M.
, and
Booser
,
E. R.
,
2017
,
Applied Tribology: Bearing Design and Lubrication
,
John Wiley and Sons
,
Hoboken, NJ
.
53.
Popov
,
H. P.
,
Popov
,
E. P.
,
Nagarajan
,
S.
, and
Lu
,
Z. A.
,
1976
,
Mechanics of Materials
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
54.
2024
, Bearing Arrangements for Wind Turbine Main Shafts, SKF Inc, https://www.skf.com/us/industries/wind-energy/drivetrain/main-shaft/bearing-arrangements%0A.
You do not currently have access to this content.