Graphical Abstract Figure

Optimization of Cylindrical Roller Profiles

Graphical Abstract Figure

Optimization of Cylindrical Roller Profiles

Close modal

Abstract

This article introduces an optimization method for cylindrical roller profiles. Unlike traditional optimization strategies based on parametric functions, the proposed method allows each point of the profile to independently adjust its drop. This variation in drop occurs iteratively and is proportional to the contact pressure at each step. The contact pressures are computed using a numerical method based on influence coefficients. The methodology yields solutions consistent with those of logarithmic profiles. In contrast to other methods, this approach allows the incorporation of various factors, such as roller geometric constraints and tilting control. These characteristics make it a highly versatile tool. The article presents several examples and proposes a formulation for defining manufacturing tolerances.

References

1.
Chakraborty
,
I.
,
Kumar
,
V.
,
Nair
,
S. B.
, and
Tiwari
,
R.
,
2003
, “
Rolling Element Bearing Design Through Genetic Algorithms
,”
Eng. Optim.
,
35
(
6
), pp.
649
659
.
2.
Rajeswara Rao
,
B.
, and
Tiwari
,
R.
,
2007
, “
Optimum Design of Rolling Element Bearings Using Genetic Algorithms
,”
Mech. Mach. Theory
,
42
(
2
), pp.
233
250
.
3.
Dandagwhal
,
R. D.
, and
Kalyankar
,
V. D.
,
2019
, “
Design Optimization of Rolling Element Bearings Using Advanced Optimization Technique
,”
Arab. J. Sci. Eng.
,
44
(
9
), pp.
7407
7422
.
4.
Cao
,
R.
,
Bai
,
H.
,
Cao
,
H.
,
Zhang
,
Y.
, and
Meng
,
Y.
,
2023
, “
Mixed Lubrication Analysis of Tapered Roller Bearings and Crowning Profile Optimization Based on Numerical Running-In Method
,”
Lubricants
,
11
(
97
), pp.
1
20
.
5.
Popescu
,
A.
, and
Popescu
,
G.
,
2022
, “
Cylindrical Roller Bearings With Optimized Profile Taking Into Account the Material Structure and Operating Temperature
,”
Bullet. Polytech. Inst. Iași. Mach. Construct. Sect.
,
68
(
1
), pp.
109
123
.
6.
Liu
,
X.
, and
Yang
,
P.
,
2002
, “
Analysis of the Thermal Elastohydrodynamic Lubrication of a Finite Line Contact
,”
Tribol. Int.
,
35
(
3
), pp.
137
144
.
7.
Salunkhe
,
A. V.
,
Agashe
,
U. C.
, and
Hatwalane
,
S.
,
2017
, “
A Review on Design Optimization of Rolling Contact Bearings
,”
Int. J. Curr. Eng. Technol.
,
7
(
3
), pp.
983
986
.
8.
Şahin
,
İ.
, and
Şahin
,
T.
,
2019
, “
Design Optimisation of Rolling Element Bearings: A Literature Review
,”
Gazi Univ. J. Sci. Part A: Eng. Innov.
,
6
(
2
), pp.
43
50
.
9.
Lundberg
,
G.
,
1939
, “
Elastische Berührung Zweier Halbräume
,”
Forsch. Geb. Ingenieurwes.
,
10
(
5
), pp.
201
211
.
10.
Johns
,
P. M.
, and
Gohar
,
R.
,
1981
, “
Roller Bearings Under Radial and Eccentric Loads
,”
Tribol. Int.
,
14
(
3
), pp.
131
136
.
11.
Wu
,
Z.
,
Xu
,
Y.
,
Deng
,
S.
, and
Liu
,
K.
,
2020
, “
Study on Logarithmic Crowning of Cylindrical Roller Profile Considering Angular Misalignment
,”
J. Mech. Sci. Technol.
,
34
(
5
), pp.
2111
2120
.
12.
Huang
,
C.
,
Zhao
,
Y.
, and
Liu
,
M.
,
2018
, “
Analytical Modeling and Optimization of Logarithmic Sprag Clutch Considering Profile Modification
,”
Shock Vib.
,
2018
(
1
), pp.
1
13
.
13.
Cui
,
L.
, and
He
,
Y.
,
2015
, “
A New Logarithmic Profile Model and Optimization Design of Cylindrical Roller Bearing
,”
Ind. Lubr. Tribol.
,
67
(
5
), pp.
498
508
.
14.
Kumar
,
K. S.
,
Tiwari
,
R.
, and
Prasad
,
P. V. V. N.
,
2009
, “
An Optimum Design of Crowned Cylindrical Roller Bearings Using Genetic Algorithms
,”
ASME J. Mech. Des.
,
131
(
5
), p.
051011
.
15.
Fujiwara
,
H.
, and
Kawase
,
T.
,
2006
, “
Logarithmic Profiles of Rollers in Roller Bearings and Optimization of the Profiles
,”
Trans. Jpn. Soc. Mech. Eng. Ser., C
,
72
(
721
), pp.
3022
3029
.
16.
Tudose
,
L.
, and
Tudose
,
C.
,
2018
, “
Roller Profiling to Increase Rolling Bearing Performances
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
393
, pp.
1
26
.
17.
Ursache
,
C.
,
Şerdean
,
F. M.
, and
Tudose
,
L.
,
2024
, “
E2ZB Approximation of the Cylindrical Roller Optimal Profile to Increase the Performance of Rolling Bearings
,”
The 17th International Conference Interdisciplinarity in Engineering. Inter-ENG 2023
,
Târgu Mureș, Romania
,
Oct. 5–6
.
18.
Hartnett
,
M. J.
,
1979
, “
The Analysis of Contact Stresses in Rolling Element Bearings
,”
ASME J. Lubr. Technol.
,
101
(
1
), pp.
105
109
.
19.
Oh
,
K. P.
, and
Trachman
,
E. G.
,
1976
, “
A Numerical Procedure for Designing Profiled Rolling Elements
,”
ASME J. Lubr. Technol.
,
98
(
4
), pp.
547
551
.
20.
Ahmadi
,
N.
,
Keer
,
L. M.
, and
Mura
,
T.
,
1983
, “
Non-Hertzian Contact Stress Analysis for an Elastic Half Space—Normal and Sliding Contact
,”
Int. J. Solids Struct.
,
19
(
4
), pp.
357
373
.
21.
Blanco-Lorenzo
,
J.
,
2023
, “
Wheel-Rail Interaction and Conformal Contact Analysis
,”
Ph.D. thesis
, pp.
1
661
, http://hdl.handle.net/10810/64578.
22.
Blanco-Lorenzo
,
J.
,
Liu
,
S.
,
Santamaria
,
J.
,
Meehan
,
P. A.
, and
Vadillo
,
E. G.
,
2023
, “
Frictional Contact Analysis in a Spherical Roller Bearing
,”
J. Comput. Des. Eng.
,
10
(
1
), pp.
139
159
.
23.
Boussinesq
,
J.
,
1885
,
Application des Potentiels à l’ÉTude de l’ÉQuilibre et du Movement des Solides ÉLastiques
,
Gauthier Villars
,
Paris
.
24.
Love
,
A. E. H.
,
1929
, “
The Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary
,”
Philos. Trans. R. Soc.
,
228
(
659–669
), pp.
377
420
.
25.
Lundberg
,
G.
, and
Sjövall
,
H.
,
1958
,
Stress and Deformation in Elastic Contacts
,
Institute of Elasticity and Strength of Materials, Chalmers University of Technology
,
Gothenburg, Sweden
.
26.
Palmgren
,
A.
,
1959
,
Ball and Roller Bearing Engineering
, 3rd ed.,
Burbank
,
Philadelphia, PA
.
You do not currently have access to this content.