Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

With increasing environmental awareness, the demand for bio-based lubricants is escalating, positioning vegetable oils as viable alternatives to traditional industrial lubricants. This study employs comprehensive factor scores to assess and rank the antiwear property and oxidation stability of 53 vegetable oils with diverse fatty acid compositions. Xanthoceras sorbifolia Bunge oil (XSBO), derived from woody oil plants renowned for their economic and environmental benefits, emerges as a standout candidate following the exclusion of previously reported lubricant types. Comparative evaluations via four-ball friction tests and pressurized differential scanning calorimeter (PDSC) analyses reveal that XSBO’s antioxidant property is slightly inferior to the mineral oil, poly-alpha-olefin, and synthetic ester. However, XSBO exhibits superior tribological property and viscosity characteristics. Supported by computational modeling and laboratory validation, XSBO demonstrates significant promise as a bio-based lubricant, advocating its potential as an ideal replacement for conventional base oils.

References

1.
Nomede-Martyr
,
N.
,
Bercion
,
Y.
,
Philippe
,
B.
,
Dubois
,
M.
,
Joseph
,
H.
, and
Philippe
,
T.
,
2022
, “
Moringa Oil With Pristine and Fluorinated Carbon Nanofibers as Additives for Lubrication
,”
ASME J. Tribol.
,
144
(
5
), p.
051901
.
2.
Bhaumik
,
S.
,
Datta
,
S.
, and
Pathak
,
S. D.
,
2017
, “
Analyses of Tribological Properties of Castor Oil With Various Carbonaceous Micro- and Nano-Friction Modifiers
,”
ASME J. Tribol.
,
139
(
6
), p.
061802
.
3.
Taheri
,
R.
,
Kosasih
,
B.
, and
Zhu
,
H.
,
2022
, “
TiO2-SiO2 Nanoparticle-Stabilized Soybean Oil-in-Water Emulsions: Dispersion Stability, Rolling Lubrication Performance, and Surface Self-Cleaning Effects
,”
ASME J. Tribol.
,
144
(
9
), p.
091901
.
4.
Woma
,
T. Y.
,
Lawal
,
S. A.
,
Abdulrahman
,
A. S.
,
Olutoye
,
M. A.
, and
Ojapah
,
M. M.
,
2019
, “
Vegetable Oil Based Lubricants: Challenges and Prospects
,”
Tribol. Online
,
14
(
2
), pp.
60
70
.
5.
Jain
,
S.
, and
Sharma
,
M. P.
,
2012
, “
Application of Thermogravimetric Analysis for Thermal Stability of Jatropha Curcas Biodiesel
,”
Fuel
,
93
(
1
), pp.
252
257
.
6.
Zareh-Desari
,
B.
, and
Davoodi
,
B.
,
2016
, “
Assessing the Lubrication Performance of Vegetable Oil-Based Nano-Lubricants for Environmentally Conscious Metal Forming Processes
,”
J. Cleaner Prod.
,
135
, pp.
1198
1209
.
7.
Tumanyan
,
B. P.
,
Shcherbakov
,
P. Y.
,
Sharin
,
E. A.
,
Matin
,
M. E.
, and
Matveeva
,
O. A.
,
2020
, “
Effectiveness of Vegetable-Oil Fatty Acids as Antiwear Additives for Diesel Oils
,”
Chem. Technol. Fuels Oils
,
56
(
4
), pp.
517
529
.
8.
Cermak
,
S. C.
,
Biresaw
,
G.
,
Isbell
,
T. A.
,
Evangelista
,
R. L.
,
Vaughn
,
S. F.
, and
Murray
,
R.
,
2013
, “
New Crop Oils-Properties as Potential Lubricants
,”
Ind. Crops Prod.
,
44
, pp.
232
239
.
9.
Wang
,
T.
,
Wang
,
Z.
,
Chen
,
H.
,
Dai
,
K.
, and
Gao
,
X.
,
2020
, “
BPNN-QSTR Models for Triazine Derivatives for Lubricant Additives
,”
ASME J. Tribol.
,
142
(
1
), p.
011801
.
10.
Gao
,
X.
,
Wang
,
Z.
,
Wang
,
T.
,
Song
,
Z.
,
Dai
,
K.
, and
Chen
,
H.
,
2019
, “
BPNN-QSTR Modeling to Develop Isosteres as Sulfur-Free, Anti-Wear Lubricant Additives
,”
ASME J. Tribol.
,
141
(
1
), p.
011801
.
11.
Li
,
H.
,
Fan
,
Y.-w.
,
Li
,
J.
,
Tang
,
L.
,
Hu
,
J.-n.
, and
Deng
,
Z.-y.
,
2013
, “
Evaluating and Predicting the Oxidative Stability of Vegetable Oils With Different Fatty Acid Compositions
,”
J. Food Sci.
,
78
(
4
), pp.
H633
H641
.
12.
Sneha
,
E.
,
Akhil
,
R. B.
,
Krishna
,
A.
,
Rani
,
S.
, and
Kumar
,
S. A.
,
2021
, “
Formulation of Bio-Lubricant Based on Modified Rice Bran Oil With Stearic Acid as an Anti-Wear Additive
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
235
(
9
), pp.
1950
1957
.
13.
Sajeeb
,
A.
, and
Rajendrakumar
,
P. K.
,
2019
, “
Comparative Evaluation of Lubricant Properties of Biodegradable Blend of Coconut and Mustard Oil
,”
J. Cleaner Prod.
,
240
, p.
118255
.
14.
Jang
,
A.
,
Srinivasan
,
P.
,
Lee
,
N. Y.
,
Song
,
H. P.
,
Lee
,
J. W.
,
Lee
,
M.
, and
Jo
,
C.
,
2008
, “
Comparison of Hypolipidemic Activity of Synthetic Gallic Acid-Linoleic Acid Ester With Mixture of Gallic Acid and Linoleic Acid, Gallic Acid, and Linoleic Acid on High-Fat Diet Induced Obesity in C57BL/6 Cr Slc Mice
,”
Chem. Biol. Interact.
,
174
(
2
), pp.
109
117
.
15.
Xing
,
J.
, and
Song
,
J.
,
2023
, “
Source Apportionment of Atmospheric Particulates in China Sea: A Review
,”
Environ. Chem.
,
42
(
3
), pp.
942
962
.
16.
Liu
,
Z.
,
Zhan
,
Q.
, and
Tian
,
G.
,
2019
, “
Research Review on Comprehensive Evaluation of Factor Analysis
,”
Stat. Decis.
,
1
, pp.
68
73
.
17.
Liu
,
J.
,
Zhang
,
R.
,
Yang
,
S.
,
Liu
,
T.
,
Yi
,
C.
,
Zhang
,
Y.
, and
Jia
,
D.
,
2023
, “
Evaluation of Anti-Wear Properties of Different Vegetable Oils Based on QSPR Model
,”
Tribol. Lett.
,
71
(
2
), p.
35
.
18.
Liu
,
C.-j.
,
Wang
,
H.-o.
,
Xue
,
Y.-l.
,
Zhang
,
Z.-y.
,
Niu
,
L.-y.
,
Li
,
D.-j.
,
Jiang
,
N.
,
Cui
,
L.
, and
Liu
,
C.-q.
,
2017
, “
Screening Quality Evaluation Factors of Freeze-Dried Peach (Prunus persica L. Batsch) Powders From Different Ripening Time Cultivars
,”
J. Food Qual.
,
7
, p.
7213694
.
19.
Kim
,
J. K.
,
Lim
,
H. J.
,
Shin
,
D. H.
,
Kim
,
C. R.
,
Kim
,
M. J.
,
Chun
,
J.
, and
Shin
,
E. C.
,
2015
, “
Compositions of Fatty Acids and Phytosterols of Plant-Based Oils and Their Associations With Anti-Oxidative Capacity: Application of Principal Component Analysis
,”
Hortic. Environ. Biotechnol.
,
56
(
4
), pp.
561
567
.
20.
Petropoulos
,
S. A.
,
Fernandes
,
A.
,
Calhelha
,
R. C.
,
Rouphael
,
Y.
,
Petrovic
,
J.
,
Sokovic
,
M.
,
Ferreira
,
I.
, and
Barros
,
L.
,
2021
, “
Antimicrobial Properties, Cytotoxic Effects, and Fatty Acids Composition of Vegetable Oils From Purslane, Linseed, Luffa, and Pumpkin Seeds
,”
Appl. Sci.-Basel
,
11
(
12
), p.
5738
.
21.
Lee
,
D.-S.
,
Noh
,
B.-S.
,
Bae
,
S.-Y.
, and
Kim
,
K.
,
1998
, “
Characterization of Fatty Acids Composition in Vegetable Oils by Gas Chromatography and Chemometrics
,”
Anal. Chim. Acta
,
358
(
2
), pp.
163
175
.
22.
Multari
,
S.
,
Marsol-Vall
,
A.
,
Heponiemi
,
P.
,
Suomela
,
J. P.
, and
Yang
,
B. R.
,
2019
, “
Changes in the Volatile Profile, Fatty Acid Composition and Other Markers of Lipid Oxidation of Six Different Vegetable Oils During Short-Term Deep-Frying
,”
Food Res. Int.
,
122
, pp.
318
329
.
23.
Ai
,
F. F.
,
Bin
,
J.
,
Zhang
,
Z. M.
,
Huang
,
J. H.
,
Wang
,
J. B.
,
Liang
,
Y. Z.
,
Yu
,
L.
, and
Yang
,
Z. Y.
,
2014
, “
Application of Random Forests to Select Premium Quality Vegetable Oils by Their Fatty Acid Composition
,”
Food Chem.
,
143
, pp.
472
478
.
24.
Alves
,
A. Q.
,
da Silva
,
V. A.
,
Silva Goes
,
A. J.
,
Silva
,
M. S.
,
de Oliveira
,
G. G.
,
Gomes Alves Bastos
,
I. V.
,
de Castro Neto
,
A. G.
, and
Alves
,
A. J.
,
2019
, “
The Fatty Acid Composition of Vegetable Oils and Their Potential Use in Wound Care
,”
Adv. Skin Wound Care
,
32
(
8
), pp.
1
8
.
25.
Borriello
,
A.
,
Miele
,
N. A.
,
Masi
,
P.
,
Aiello
,
A.
, and
Cavella
,
S.
,
2021
, “
Effect of Fatty Acid Composition of Vegetable Oils on Crystallization and Gelation Kinetics of Oleogels Based on Natural wax
,”
Food Chem.
,
375
, p.
131805
.
26.
Gutierrez-Luna
,
K.
,
Ansorena
,
D.
, and
Astiasaran
,
I.
,
2022
, “
Fatty Acid Profile, Sterols, and Squalene Content Comparison Between Two Conventional (Olive Oil and Linseed Oil) and Three Non-Conventional Vegetable Oils (Echium Oil, Hempseed Oil, and Moringa Oil)
,”
J. Food Sci.
,
87
(
4
), pp.
1489
1499
.
27.
Yuenyong
,
J.
,
Pokkanta
,
P.
,
Phuangsaijai
,
N.
,
Kittiwachana
,
S.
,
Mahatheeranont
,
S.
, and
Sookwong
,
P.
,
2021
, “
GC-MS and HPLC-DAD Analysis of Fatty Acid Profile and Functional Phytochemicals in Fifty Cold-Pressed Plant Oils in Thailand
,”
Heliyon
,
7
(
2
), p.
e06304
.
28.
Mera
,
J. J. R.
,
Abreu-Naranjo
,
R.
,
Alvarez-Suarez
,
J. M.
, and
Viafara
,
D.
,
2019
, “
Chemical Characterization, Fatty Acid Profile and Antioxidant Activity of Gustavia Macarenensis Fruit Mesocarp and Its Oil From the Amazonian Region of Ecuador as an Unconventional Source of Vegetable oil
,”
Grasas Aceites
,
70
(
2
), p.
e298
.
29.
Bhaumik
,
S.
,
Mathew
,
B. R.
, and
Datta
,
S.
,
2019
, “
Computational Intelligence-Based Design of Lubricant With Vegetable Oil Blend and Various Nano Friction Modifiers
,”
Fuel
,
241
, pp.
733
743
.
30.
Rani
,
S.
,
2017
, “
The Evaluation of Lubricant Properties and Environmental Effect of Bio-Lubricant Developed From Rice Bran Oil
,”
Int. J. Surf. Sci. Eng.
,
11
(
5
), pp.
403
417
.
31.
Gul
,
M.
,
Zulkifli
,
N. W. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Mujtaba
,
M. A.
,
Harith
,
M. H.
,
Syahir
,
A. Z.
,
Ahmed
,
W.
, and
Farooq
,
A. B.
,
2020
, “
Effect of TMP-Based-Cottonseed oil-Biolubricant Blends on Tribological Behavior of Cylinder Liner-Piston Ring Combinations
,”
Fuel
,
278
, p.
118242
.
32.
Sabarinath
,
S.
,
Sreenidhi
,
P. R.
,
Rajendrakumar
,
P. K.
,
Nair
,
K. P.
,
Padil
,
V. V. T.
,
Koshy
,
C. P.
, and
Pranav
,
P.
,
2023
, “
Experimental Investigations of Sesame Oil-Based Nano-Lubricant in Four-Stroke SI Engine
,”
Trans. Indian Inst. Met.
,
76
(
9
), pp.
2581
2585
.
33.
Biresaw
,
G.
,
Bantchev
,
G. B.
, and
Cermak
,
S. C.
,
2011
, “
Tribological Properties of Vegetable Oils Modified by Reaction With Butanethiol
,”
Tribol. Lett.
,
43
(
1
), pp.
17
32
.
34.
Xu
,
Z. Y.
,
Hu
,
K. H.
,
Han
,
C. L.
,
Hu
,
X. G.
, and
Xu
,
Y. F.
,
2013
, “
Morphological Influence of Molybdenum Disulfide on the Tribological Properties of Rapeseed Oil
,”
Tribol. Lett.
,
49
(
3
), pp.
513
524
.
35.
Liu
,
P.
,
Wang
,
X.
,
Wu
,
J.
,
Lin
,
W.
,
Feng
,
Y. H.
,
Chen
,
B. S.
,
Fang
,
J. H.
, and
Jiang
,
Z. Q.
,
2020
, “
Effect of Boron-Nitrogen Modified Soybean Oil Additive on Biodegradability, Anti-Oxidation Property, and Lubricity of Rapeseed Oil
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
234
(
2
), pp.
282
291
.
36.
Zheng
,
Y.
,
Gao
,
P.
,
Wang
,
S.
,
Ruan
,
Y.
,
Zhong
,
W.
,
Hu
,
C.
, and
He
,
D.
,
2022
, “
Comparison of Different Extraction Processes on the Physicochemical Properties, Nutritional Components and Antioxidant Ability of Xanthoceras sorbifolia Bunge Kernel Oil
,”
Molecules
,
27
(
13
), p.
4185
.
37.
Wang
,
H.
,
Jia
,
C.
,
Xia
,
X.
,
Karangwa
,
E.
, and
Zhang
,
X.
,
2018
, “
Enzymatic Synthesis of Phytosteryl Lipoate and Its Antioxidant Properties
,”
Food Chem.
,
240
, pp.
736
742
.
38.
Baumgartner
,
S.
,
Mensink
,
R. P.
, and
Plat
,
J.
,
2016
, “
Effects of a Plant Sterol or Stanol Enriched Mixed Meal on Postprandial Lipid Metabolism in Healthy Subjects
,”
PLoS One
,
11
(
9
), p.
e0160396
.
39.
Quan
,
F.
,
2023
, “
Operation Analysis of High Pressure Hydrogenation Unit Producing API Ⅲ Base Oil
,”
Mod. Chem. Res.
,
22
, pp.
161
163
.
40.
Li
,
Z.
,
Jiusheng
,
L.
,
Yanhui
,
X.
, and
Jian
,
X.
,
2023
, “
Comparative Study on Properties of Low Viscosity Poly α-Olefin Base oil Synthesized With α-Olefin From Coal by Metallocene Catalyst
,”
Lubr. Eng.
,
48
(
12
), pp.
124
129
.
41.
Pop
,
L.
,
Puşcaş
,
C.
,
Bandur
,
G.
,
Vlase
,
G.
, and
Nutiu
,
R.
,
2008
, “
Basestock Oils for Lubricants From Mixtures of Corn Oil and Synthetic Diesters
,”
J. Am. Oil Chem. Soc.
,
85
(
1
), pp.
71
76
.
42.
Liu
,
J.
,
Yi
,
C.
,
Zhang
,
Y.
,
Yang
,
S.
,
Liu
,
T.
,
Zhang
,
R.
,
Jia
,
D.
,
Peng
,
S.
, and
Yang
,
Q.
,
2024
, “
Structure–Activity Relationship Study of Anti-Wear Additives in Rapeseed Oil Based on Machine Learning and Logistic Regression
,”
RSC Adv.
,
14
(
12
), pp.
8464
8480
.
43.
Zhang
,
X.
,
Li
,
C.
,
Zhou
,
Z.
,
Liu
,
B.
,
Zhang
,
Y.
,
Yang
,
M.
,
Gao
,
T.
, et al
,
2023
, “
Vegetable Oil-Based Nanolubricants in Machining: From Physicochemical Properties to Application
,”
Chin. J. Mech. Eng.
,
36
(
1
), pp.
1
39
.
44.
Golodnizky
,
D.
,
Rosen-Kligvasser
,
J.
, and
Davidovich-Pinhas
,
M.
,
2021
, “
The Role of the Polar Head Group and Aliphatic Tail in the Self-Assembly of Low Molecular Weight Molecules in Oil
,”
Food Struct.-Netherlands
,
30
, p.
100240
.
45.
Chan
,
C.-H.
,
Tang
,
S. W.
,
Mohd
,
N. K.
,
Lim
,
W. H.
,
Yeong
,
S. K.
, and
Idris
,
Z.
,
2018
, “
Tribological Behavior of Biolubricant Base Stocks and Additives
,”
Renewable Sustainable Energy Rev.
,
93
, pp.
145
157
.
46.
Andrade
,
A. W. L.
,
Machado
,
K. D. C.
,
Machado
,
K. D. C.
,
Figueiredo
,
D. D. R.
,
David
,
J. M.
,
Islam
,
M. T.
,
Uddin
,
S. J.
,
Shilpi
,
J. A.
, and
Costa
,
J. P.
,
2018
, “
In Vitro Antioxidant Properties of the Biflavonoid Agathisflavone
,”
Chem. Cent. J.
,
12
(
1
), p.
75
.
You do not currently have access to this content.