Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

As modern devices and systems continue to advance, device wear remains a key factor in limiting their performance and lifetime, as well as environmental and health effects. Traditional approaches often rely on wear prediction based on physical models, but due to device complexity and uncertainty, these methods often fail to provide accurate predictions and accurate wear identification. Machine learning, as a data-driven approach based on its ability to discover patterns and correlations in complex systems, has enormous potential for monitoring and predicting device wear. Here, we review recent advances in applying machine learning for predicting the wear of mechanical components. Machine learning for wear prediction shows significant potential in optimizing material selection, manufacturing processes, and equipment maintenance, ultimately enhancing productivity and resource efficiency. Successful implementation relies on careful data collection, standardized evaluation methods, and the selection of effective algorithms, with artificial neural networks (ANNs) frequently demonstrating notable success in predictive accuracy.

References

1.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R. X.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
.
2.
Çınar
,
Z. M.
,
Abdussalam Nuhu
,
A.
,
Zeeshan
,
Q.
,
Korhan
,
O.
,
Asmael
,
M.
, and
Safaei
,
B.
,
2020
, “
Machine Learning in Predictive Maintenance Towards Sustainable Smart Manufacturing in Industry 4.0
,”
Sustainability
,
12
(
19
), p.
8211
.
3.
Jordan
,
M. I.
, and
Mitchell
,
T. M.
,
2015
, “
Machine Learning: Trends, Perspectives, and Prospects
,”
Science
,
349
(
6245
), pp.
255
260
.
4.
El Naqa
,
I.
, and
Murphy
,
M. J.
,
2015
, “What Is Machine Learning?,”
Machine Learning in Radiation Oncology
,
I.
El Naqa
,
R.
Li
, and
M.
Murphy
, eds.,
Springer
,
Cham
, pp.
5
7
.
5.
Weerts
,
H. J. P.
,
Mueller
,
A. C.
, and
Vanschoren
,
J.
,
2020
, Importance of Tuning Hyperparameters of Machine Learning Algorithms. CoRR, abs/2007.07588. .
6.
Rojek
,
I.
,
Jasiulewicz-Kaczmarek
,
M.
,
Piechowski
,
M.
, and
Mikołajewski
,
D.
,
2023
, “
An Artificial Intelligence Approach for Improving Maintenance to Supervise Machine Failures and Support Their Repair
,”
Appl. Sci.
,
13
(
8
), p.
4971
.
7.
Zhong
,
D.
,
Xia
,
Z.
,
Zhu
,
Y.
, and
Duan
,
J.
,
2023
, “
Overview of Predictive Maintenance Based on Digital Twin Technology
,”
Heliyon
,
9
(
4
), p.
e14534
.
8.
Dong
,
G.
,
Li
,
X.
,
Zhao
,
J.
,
Su
,
S.
,
Misra
,
R. D. K.
,
Xiao
,
R.
, and
Shang
,
C.
,
2020
, “
Machine Learning Guided Methods in Building Chemical Composition-Hardenability Model for Wear-Resistant Steel
,”
Mater. Today Commun.
,
24
, pp.
101332
101332
.
9.
Alouani
,
A. T.
, and
Elfouly
,
T.
,
2022
, “
Traumatic Brain Injury (TBI) Detection: Past, Present, and Future
,”
Biomedicines
,
10
(
10
), p.
2472
.
10.
What Are Neural Networks?
IBM
. https://www.ibm.com/topics/neural-networks
11.
Montesinos López
,
O. A.
,
Montesinos López
,
A.
, and
Crossa
,
J.
,
2022
, “Fundamentals of Artificial Neural Networks and Deep Learning,”
Multivariate Statistical Machine Learning Methods for Genomic Prediction
,
Springer
,
Cham
, pp.
382
383
.
12.
Alzubaidi
,
L.
,
Zhang
,
J.
,
Humaidi
,
A. J.
,
Al-Dujaili
,
A.
,
Duan
,
Y.
,
Al-Shamma
,
O.
,
Santamaría
,
J.
,
Fadhel
,
M. A.
,
Al-Amidie
,
M.
, and
Farhan
,
L.
,
2021
, “
Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions
,”
J. Big Data
,
8
(
1
), p.
53
.
13.
Mendonça
,
M. R. F.
,
Barreto
,
A. M. S.
, and
Ziviani
,
A.
,
2021
, “
Approximating Network Centrality Measures Using Node Embedding and Machine Learning
,”
IEEE Trans. Network Sci. Eng.
,
8
(
1
), pp.
220
230
.
14.
Activation Functions in Neural Networks
,
2017
, Sagar Sharma, Medium. https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
15.
Understanding Backpropagation Algorithm, Simeon Kostadinov
,
Medium
,
2019
. https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
16.
Hernandez-Lobato
,
J. M.
, and
Adams
,
R.
,
2015
, “
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks. Proceedings of the 32nd International Conference on Machine Learning
,”
Proc. Mach. Learn. Res.
,
37
, pp.
1861
1869
. https://proceedings.mlr.press/v37/hernandez-lobatoc15.html
17.
Loss Functions: Why Do We Need Them? Ishaan Kulkarni
,
Medium
,
2023
. https://medium
18.
What Are Hyperparameters? And How to Tune the Hyperparameters in a Deep Neural Network? Pranoy Radhakrishnan
,
Medium
,
2017
. https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters-in-a-deep-neural-network-d0604917584a
19.
Neural Network Definition and Components What Is an Artificial Neural Network
.
Questions and Answers in MRI
. https://mriquestions.com/what-is-a-neural-network.html
20.
Shen
,
C.
,
2017
, “
A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists
,”
Water Resour. Res.
,
54
(
11
), pp.
8558
8593
.
21.
Zhou
,
J.
,
Gandomi
,
A. H.
,
Chen
,
F.
, and
Holzinger
,
A.
,
2021
, “
Evaluating the Quality of Machine Learning Explanations: A Survey on Methods and Metrics
,”
Electronics
,
10
(
5
), p.
593
.
22.
Swalin
,
A.
, Choosing the Right Metric for Evaluating Machine Learning Models — Part 2, Alvira Swalin, Medium, 2018. https://medium.com/usf-msds/choosing-the-right-metric-for-evaluating-machine-learning-models-part-2-86d5649a5428
23.
Chai
,
T. T.
, and
Draxler
,
R.
,
2014
, “
Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?
,”
Geosci. Model Dev.
,
7
(
3
), pp.
1247
1250
.
24.
Steurer
,
M.
,
Hill
,
R. J.
, and
Pfeifer
,
N.
,
2021
, “
Metrics for Evaluating the Performance of Machine Learning Based Automated Valuation Models
,”
J. Property Res.
,
38
(
2
), pp.
99
129
.
25.
Comparing Robustness of MAE, MSE and RMSE, Vinicius Trevisan, Medium
,
2022
. https://towardsdatascience.com/comparing-robustness-of-mae-mse-and-rmse-6d69da870828
26.
Measuring Explanatory Power With the R-squared, Iliya Valchanov, 365 Data Science
,
2023
. https://365datascience.com/tutorials/statistics-tutorials/r-squared/
27.
On the Use of the Adjusted Rand Index as a Metric for Evaluating Supervised Classification Artificial Neural Networks—ICANN 2009
, Volume 5769 Jorge M. Santos, Mark Embrechts.
28.
Evaluating Models: Understanding the BLEU Score
. https://cloud.google.com/translate/automl/docs/evaluate&hash;bleu
29.
Cross-Validation in Machine Learning, Prashant Gupta
,
Medium
,
2017
. https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f
30.
Allen
,
D. M.
,
1974
, “
The Relationship Between Variable Selection and Data Augmentation and a Method for Prediction
,”
Technometrics
,
16
(
1
), pp.
125
127
. JSTOR, https://doi.org/10.2307/1267500.
31.
Shah
,
T.
, About Train, Validation and Test Sets in Machine Learning, Medium, 2017. https://towardsdatascience.com/train-validation-and-test-sets-72cb40cba9e7
32.
Gyurova
,
L. A.
,
Miniño-Justel
,
P.
, and
Schlarb
,
A. K.
,
2010
, “
Modeling the Sliding Wear and Friction Properties of Polyphenylene Sulfide Composites Using Artificial Neural Networks
,”
Wear
,
268
(
5–6
), pp.
708
714
.
33.
Maarif
,
M. R.
,
Listyanda
,
R. F.
,
Kang
,
Y.-S.
, and
Syafrudin
,
M.
,
2022
, “
Artificial Neural Network Training Using Structural Learning With Forgetting for Parameter Analysis of Injection Molding Quality Prediction
,”
Information
,
13
(
10
), p.
488
.
34.
Altay
,
O.
,
Gurgenc
,
T.
,
Ulas
,
M.
, and
Özel
,
C.
,
2020
, “
Prediction of Wear Loss Quantities of Ferro-Alloy Coating Using Different Machine Learning Algorithms
,”
Friction
,
8
(
1
), pp.
107
114
.
35.
Marian
,
M.
, and
Tremmel
,
S.
,
2021
, “
Current Trends and Applications of Machine Learning in Tribology—A Review
,”
Lubricants
,
9
(
9
), p.
86
.
36.
Zhou
,
R.
,
Ma
,
R.
,
Bao
,
L.
,
Cai
,
M.
,
Zhou
,
F.
,
Li
,
W.
, and
Wang
,
X.
,
2023
, “
“Lubrication Brain” ― A Machine Learning Framework of Lubrication oil Molecule Design
,”
Tribol. Int.
,
183
, p.
108381
. ISSN 0301-679X.
37.
Zhang
,
Y.
, and
Xu
,
X.
,
2020
, “
Machine Learning Decomposition Onset Temperature of Lubricant Additives
,”
J. Mater. Eng. Perform.
,
29
(
10
), pp.
6605
6616
.
38.
Jia
,
D.
,
Duan
,
H.
,
Zhan
,
S.
,
Jin
,
Y.
,
Cheng
,
B.
, and
Li
,
J.
,
2019
, “
Design and Development of Lubricating Material Database and Research on Performance Prediction Method of Machine Learning
,”
Sci. Rep.
,
9
(
1
), p.
20277
.
39.
Sathiya
,
P.
,
Aravindan
,
S.
,
Haq
,
A. N.
, and
Paneerselvam
,
K.
,
2009
, “
Optimization of Friction Welding Parameters Using Evolutionary Computational Techniques
,”
J. Mater. Process. Technol
,
209
(
5
), pp.
2576
2584
.
40.
Atharifar
,
H.
,
2009
, “
Optimum Parameters Design for Friction Stir Spot Welding Using a Genetically Optimized Neural Network System
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf
,
224
(
3
), pp.
403
418
.
41.
Du
,
Y.
,
Mukherjee
,
T.
, and
DebRoy
,
T.
,
2019
, “
Conditions for Void Formation in Friction Stir Welding From Machine Learning
,”
npj Comput. Mater.
,
5
(
1
), p.
68
.
42.
Maintenance Statistics: Predictive & Preventive, Labor & Costs
,
UpKeep
. https://upkeep.com/learning/maintenance-statistics/
43.
AI-Based Predictive Maintenance Reduces Your Maintenance Cost by 10-20&per;, Greg Urban
,
LinkedIn
,
2023
. https://www.linkedin.com/pulse/ai-based-predictive-maintenance-reduces-your-cost-10-20-greg-urban
44.
Achouch
,
M.
,
Dimitrova
,
M.
,
Ziane
,
K.
,
Sattarpanah Karganroudi
,
S.
,
Dhouib
,
R.
,
Ibrahim
,
H.
, and
Adda
,
M.
,
2022
, “
On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges
,”
Appl. Sci.
,
12
(
16
), p.
8081
.
45.
What Does America Spend on Transportation and Infrastructure? Is Infrastructure Improving?
USA FACTS 2023
. https://usafacts.org/state-of-the-union/transportation-infrastructure/
46.
Biswal
,
S.
, and
Sabareesh
,
G. R.
,
2015
, “
Design and Development of a Wind Turbine Test Rig for Condition Monitoring Studies
,”
Proceedings of the 2015 International Conference on Industrial Instrumentation and Control (ICIC)
,
Pune, India
, pp.
891
896
.
47.
Pimenov
,
D. Y.
, et al
,
30 Nov. 2023
, “
State-of-the-Art Review of Applications of Image Processing Techniques for Tool Condition Monitoring on Conventional Machining Processes
,”
Int. J. Adv. Manuf. Technol.
,
130
(
1–2
), pp.
57
85
.
48.
Fu
,
J.
,
Chu
,
J.
,
Guo
,
P.
, and
Chen
,
Z.
,
2019
, “
Condition Monitoring of Wind Turbine Gearbox Bearing Based on Deep Learning Model
,”
IEEE Access
,
7
, pp.
57078
57087
.
49.
Sheng
,
S.
, “
Wind Turbine Gearbox Condition Monitoring Round Robin Study—Vibration Analysis
,” NREL 2012. https://www.nrel.gov/docs/fy12osti/54530.pdf
50.
You do not currently have access to this content.