Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Armature–rail instantaneous current-carrying friction in electromagnetic launchers refers to a sliding electric-mechanical impact friction and transition-induced arc erosion on a millisecond time scale. To reveal the electric current (50–300 A) effects on friction behavior and wear mechanism, the instantaneous current-carrying friction tests were performed with Al 1060 and Brass H62. Given the short nonlinear friction-induced signals, the friction behavior, including the time-domain information and system state, was comprehensively analyzed via frictional sound pressure (FSP), recurrence plot (RP), and recurrence quantification analysis (RQA). The wear topography was observed and characterized by the multifractal spectrum. Recurrence analyses demonstrate that as the current increases, the nonstationarity of the system state weakens, and the complexity and unpredictability enhance. Higher currents reduce the FSP amplitude, i.e., enhance the interfacial lubrication effect, but intensify electrical wear and surface roughness. This signifies a wear mechanism transition from abrasive wear and slight adhesive wear to arc ablation, fatigue wear, and severe adhesive wear. The widening spectrum width implies that the irregularity and fluctuation of the topography are enhanced with the current. RP patterns and RQA quantifiers correlate with the wear damage state. The results provide a reference for antiwear design and online degradation tracking of the rail.

References

1.
Ma
,
W. M.
,
Lu
,
J. Y.
, and
Liu
,
Y. Q.
,
2019
, “
Research Progress of Electromagnetic Launch Technology
,”
IEEE Trans. Plasma Sci.
,
47
(
5
), pp.
2197
2205
.
2.
Zhang
,
B.
,
Kou
,
Y.
,
Jin
,
K.
, and
Zheng
,
X. J.
,
2020
, “
Dynamic Response of Electromagnetic Railgun Under Time-Dependent Electromagnetic Moving Loads
,”
J. Sound Vib.
,
483
, p.
115451
.
3.
Gregori
,
S.
,
Tur
,
M.
,
Gil
,
J.
, and
Fuenmayor
,
F. J.
,
2023
, “
Assessment of Catenary Condition Monitoring by Means of Pantograph Head Acceleration and Artificial Neural Networks
,”
Mech. Syst. Signal Process.
,
202
, p.
110697
.
4.
Watt
,
T. J.
,
Clay
,
C. E.
,
Bassett
,
P. M.
, and
Bourell
,
D. L.
,
2014
, “
The Effect of Surface Indentations on Gouging in Railguns
,”
Wear
,
310
(
1–2
), pp.
41
50
.
5.
Wang
,
Z. J.
,
Chen
,
L. X.
,
Xia
,
S. G.
, and
Li
,
C. X.
,
2020
, “
Experiments and Analysis of Downslope Low-Voltage Transition in C-Type Solid Armature Rail Gun
,”
IEEE Trans. Plasma Sci.
,
48
(
7
), pp.
2601
2607
.
6.
Siopis
,
M. J.
, and
Neu
,
R. W.
,
2015
, “
Wear at High Sliding Speeds and High Contact Pressures
,”
Wear
,
342–343
, pp.
356
363
.
7.
Siopis
,
M. J.
, and
Neu
,
R. W.
,
2013
, “
Materials Selection Exercise for Electromagnetic Launcher Rails
,”
IEEE Trans. Magn.
,
49
(
8
), pp.
4831
4838
.
8.
Wang
,
X.
,
Yao
,
P. P.
,
Li
,
Y. X.
,
Zhou
,
H. B.
,
Xiao
,
Y. L.
,
Deng
,
M. W.
,
Kang
,
L.
, and
Zhou
,
P. Y.
,
2023
, “
Effects of Material Transfer Evolution on Tribological Behavior in CuCrZr Alloy Paired With 7075 Al Alloy Under Current-Carrying
,”
Tribol. Int.
,
179
, p.
107960
.
9.
Balic
,
E. E.
, and
Blanchet
,
T. A.
,
2016
, “
Simple Thermal Model to Select Electromagnetic Launcher Tribomaterials
,”
ASME J. Tribol.
,
138
(
4
), p.
041102
.
10.
Yang
,
H. J.
,
Wang
,
K.
,
Liu
,
Y. H.
,
Fu
,
L.
,
Cui
,
X. L.
,
Jiang
,
G.
, and
Hu
,
B.
,
2020
, “
The Formation of the Delamination Wear of the Pure Carbon Strip and Its Influence on the Friction and Wear Properties of the Pantograph and Catenary System
,”
Wear
,
454–455
, p.
203343
.
11.
Siopis
,
M. J.
, and
Neu
,
R. W.
,
2016
, “
The Effect of Tribomaterial Pairings on Wear of an Aluminum Slider Under High Sliding Speeds and High Contact Pressure
,”
Wear
,
352–353
, pp.
180
187
.
12.
Wu
,
Y. H.
,
Xu
,
J.
,
Zhu
,
J. J.
, and
Xu
,
W.
,
2023
, “
Research on Electrical Contact Characteristics of Brush-Rail Device With Transient Large Current
,”
IEEE Access
,
11
, pp.
37560
37569
.
13.
Lin
,
Y.
,
Li
,
J. Z.
,
Pan
,
J.
,
Zhang
,
C.
,
Ni
,
D. R.
,
Chen
,
Q.
,
Song
,
W. L.
,
Lu
,
J. Y.
,
Li
,
B.
, and
Liu
,
L.
,
2023
, “
Current-Carrying Wear Behavior and the Interface Evolution of the Cu/Al Tribological Pair
,”
Eng. Failure Anal.
,
153
, p.
107549
.
14.
Zhou
,
P. F.
, and
Li
,
B. M.
,
2021
, “
Numerical Calculation of Magnetic-Thermal Coupling and Optimization Analysis for Velocity Skin Effect
,”
IEEE Trans. Plasma Sci.
,
49
(
12
), pp.
3994
4001
.
15.
Tang
,
B.
,
Xu
,
Y. T.
,
Lin
,
Q. H.
, and
Li
,
B. M.
,
2017
, “
Synergy of Melt-Wave and Electromagnetic Force on the Transition Mechanism in Electromagnetic Launch
,”
IEEE Trans. Plasma Sci.
,
45
(
7
), pp.
1361
1367
.
16.
Goyal
,
G.
,
Khatait
,
J. P.
, and
Mukherjee
,
S.
,
2022
, “
Design and Analysis of Hybrid Armature for Electromagnetic Launch Technology
,”
IEEE Trans. Plasma Sci.
,
50
(
10
), pp.
3468
3472
.
17.
Xie
,
H. B.
,
Yang
,
H. Y.
,
Yu
,
J.
,
Gao
,
M. Y.
,
Shou
,
J. D.
,
Fang
,
Y. T.
,
Liu
,
J. B.
, and
Wang
,
H. T.
,
2021
, “
Research Progress on Advanced Rail Materials for Electromagnetic Railgun Technology
,”
Def. Technol.
,
17
(
2
), pp.
429
439
.
18.
Zhou
,
Y. K.
,
Zuo
,
X.
,
Zhu
,
H.
, and
Tang
,
W.
,
2018
, “
Development of Prediction Models of Running-In Attractor
,”
Tribol. Int.
,
117
, pp.
98
106
.
19.
Zhou
,
Y. K.
,
Wang
,
Z. Y.
,
Zuo
,
X.
, and
Zhao
,
H.
,
2023
, “
Identification of Wear Mechanisms of Main Bearings of Marine Diesel Engine Using Recurrence Plot Based on CNN Model
,”
Wear
,
520–521
, p.
204656
.
20.
Zhu
,
C. Y.
, and
Li
,
B. M.
,
2020
, “
Analysis of Sliding Electric Contact Characteristics in Augmented Railgun Based on the Combination of Contact Resistance and Sliding Friction Coefficient
,”
Def. Technol.
,
16
(
4
), pp.
747
752
.
21.
Wang
,
Z. J.
,
Chen
,
L. X.
,
Ren
,
Y.
,
Xu
,
J. H.
,
You
,
P. H.
,
Lan
,
X. Y.
,
Ge
,
Y. F.
, and
Xia
,
S. G.
,
2022
, “
Muzzle Voltage of Conventional and Augmented Railguns
,”
IEEE Trans. Plasma Sci.
,
50
(
10
), pp.
3802
3808
.
22.
Sun
,
D.
,
Li
,
G. B.
,
Wei
,
H. J.
, and
Liao
,
H. F.
,
2015
, “
Experimental Study on the Chaotic Attractor Evolvement of the Friction Vibration in a Running-In Process
,”
Tribol. Int.
,
88
, pp.
290
297
.
23.
Sun
,
G. D.
,
Zhu
,
H.
,
Ding
,
C.
,
Jiang
,
Y.
, and
Wei
,
C. L.
,
2019
, “
On the Boundedness of Running-In Attractors Based on Recurrence Plot and Recurrence Qualification Analysis
,”
Friction.
,
7
(
5
), pp.
432
443
.
24.
Zhou
,
Y. K.
,
Zhao
,
H.
, and
Zuo
,
X.
,
2022
, “
Analysis of Multi-Stage Running-In Process of Sn-11Sb-6Cu Alloy and AISI 1045 With Phase Trajectory Plot
,”
ASME J. Tribol.
,
144
(
6
), p.
061701
.
25.
Lang
,
S. H.
,
Zhu
,
H.
, and
You
,
S. Z.
,
2021
, “
Vector Characterization and Evolution of the Running-In Attractor
,”
Tribol. Int.
,
157
, p.
106888
.
26.
Ding
,
C.
,
Zhu
,
H.
,
Sun
,
G. D.
,
Wei
,
C. L.
, and
Li
,
Y. T.
,
2019
, “
Effects of System Parameters on the Chaotic Properties of 52100 Steel Sliding Against 5120 Steel
,”
Wear
,
420–421
, pp.
68
78
.
27.
Łępicka
,
M.
,
Górski
,
G.
,
Grądzka-Dahlke
,
M.
, and
Mosdorf
,
R.
,
2020
, “
Study of Tribological Behaviour of Surface Modified Stainless-Steel Using Recurrence Quantification Analysis and Principal Component Analysis
,”
Tribol. Int.
,
151
, p.
106402
.
28.
Gong
,
H. H.
, and
Fu
,
Z. T.
,
2023
, “
Modified DFA for a Robust Discrimination Between Short-Term and Long-Range Correlations in Short Time Series
,”
Physica A
,
625
, p.
128997
.
29.
Zhou
,
Y. K.
,
Zhu
,
H.
,
Zuo
,
X.
, and
Yang
,
J. H.
,
2014
, “
Chaotic Characteristics of Measured Temperatures During Sliding Friction
,”
Wear
,
317
(
1
), pp.
17
25
.
30.
Guleria
,
V.
,
Kumar
,
V.
, and
Singh
,
P. K.
,
2022
, “
Prediction of Surface Roughness in Turning Using Vibration Features Selected by Largest Lyapunov Exponent Based ICEEMDAN Decomposition
,”
Measurement
,
202
, p.
111812
.
31.
Zhou
,
Y. K.
,
Zhu
,
H.
,
Zuo
,
X.
,
Li
,
Y.
, and
Chen
,
N. X.
,
2015
, “
The Nonlinear Nature of Friction Coefficient in Lubricated Sliding Friction
,”
Tribol. Int.
,
88
, pp.
8
16
.
32.
Ding
,
C.
,
Zhu
,
H.
,
Sun
,
G. D.
,
Jiang
,
Y.
, and
Wei
,
C. L.
,
2018
, “
Dynamic States Recognition of Friction Noise in the Wear Process Based on Moving Cut Data-Approximate Entropy
,”
ASME J. Tribol.
,
140
(
5
), p.
051604
.
33.
Marwan
,
N.
,
Kurths
,
J.
, and
Foerster
,
S.
,
2015
, “
Analysing Spatially Extended High-Dimensional Dynamics by Recurrence Plots
,”
Phys. Lett. A
,
379
(
10
), pp.
894
900
.
34.
Marwan
,
N.
,
Romano
,
M. C.
,
Thiel
,
M.
, and
Kurths
,
J.
,
2007
, “
Recurrence Plots for the Analysis of Complex Systems
,”
Phys. Rep.
,
438
(
5–6
), pp.
237
329
.
35.
He
,
Q.
,
Yu
,
F. S.
,
Chang
,
J. Q.
, and
Ouyang
,
C. X.
,
2023
, “
Fuzzy Granular Recurrence Plot and Quantification Analysis: A Novel Method for Classification
,”
Pattern Recognit.
,
139
, p.
109456
.
36.
Kecik
,
K.
,
Smagala
,
A.
, and
Ciecieląg
,
K.
,
2023
, “
Diagnosis of Angular Contact Ball Bearing Defects Based on Recurrence Diagrams and Quantification Analysis of Vibration Signals
,”
Measurement
,
216
, p.
112963
.
37.
Feng
,
S. Q.
,
Ding
,
C.
,
Qiao
,
Z. Z.
,
Yuan
,
Z. P.
,
Zhou
,
Z. Y.
,
Hou
,
W. T.
, and
Piao
,
Z. Y.
,
2023
, “
Correlation Between Vibration Signal and Surface Quality Based on Recurrence Analysis During Surface Burnishing Process
,”
Mech. Syst. Signal Process.
,
200
, p.
110654
.
38.
Zhu
,
Z. C.
,
Lou
,
S.
, and
Majewski
,
C.
,
2020
, “
Characterisation and Correlation of Areal Surface Texture With Processing Parameters and Porosity of High Speed Sintered Parts
,”
Addit. Manuf.
,
36
, p.
101402
.
39.
Xu
,
C.
,
Wu
,
T. H.
,
Huo
,
Y. W.
, and
Yang
,
H. B.
,
2019
, “
In-Situ Characterization of Three Dimensional Worn Surface Under Sliding-Rolling Contact
,”
Wear
,
426–427
, Part B, pp.
1781
1787
.
40.
Schouwenaars
,
R.
,
Jacobo
,
V. H.
, and
Ortiz
,
A.
,
2017
, “
The Effect of Vertical Scaling on the Estimation of the Fractal Dimension of Randomly Rough Surfaces
,”
Appl. Surf. Sci.
,
425
, pp.
838
846
.
41.
Balagopalan
,
S.
,
Abdul
,
R. I.
,
Sharma
,
H.
,
Chhabra
,
I. M.
,
Gupta
,
M. K.
,
Manimaran
,
P.
, and
Karthikeyan
,
B.
,
2022
, “
Fractal and Multifractal Analysis on Fused Silica Glass Formed by Bound Abrasive Grain Mediated Grinding Using Diamond Grits
,”
J. Non-Cryst. Solids
,
581
, p.
121418
.
42.
da Silva
,
A. S. A.
,
Stosic
,
T.
,
Arsenić
,
I.
,
Menezes
,
R. S. C.
, and
Stosic
,
B.
,
2023
, “
Multifractal Analysis of Standardized Precipitation Index in Northeast Brazil
,”
Chaos, Solitons Fractals
,
172
, p.
113600
.
43.
Nasehnejad
,
M.
,
Gholipour Shahraki
,
M.
, and
Nabiyouni
,
G.
,
2016
, “
Atomic Force Microscopy Study, Kinetic Roughening and Multifractal Analysis of Electrodeposited Silver Films
,”
Appl. Surf. Sci.
,
389
, pp.
735
741
.
44.
Zuo
,
X.
,
Tan
,
Y.
,
Zhou
,
Y. K.
,
Zhu
,
H.
, and
Fang
,
H. F.
,
2018
, “
Multifractal Analysis of Three-Dimensional Surface Topographies of Gcr15 Steel and H70 Brass During Wear Process
,”
Measurement
,
125
, pp.
196
218
.
45.
Aksamit
,
N. O.
, and
Whitfield
,
P. H.
,
2019
, “
Examining the Pluvial to Nival River Regime Spectrum Using Nonlinear Methods: Minimum Delay Embedding Dimension
,”
J. Hydrol.
,
572
, pp.
851
868
.
46.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
33
(
2
), pp.
1134
1140
.
47.
Zou
,
Y.
,
Donner
,
R. V.
,
Marwan
,
N.
,
Donges
,
J. F.
, and
Kurths
,
J.
,
2019
, “
Complex Network Approaches to Nonlinear Time Series Analysis
,”
Phys. Rep.
,
787
, pp.
1
97
.
48.
Jeon
,
Y. J.
, and
Kang
,
S. J.
,
2023
, “
Multi-Slice Nested Recurrence Plot (MsNRP): A Robust Approach for Person Identification Using Daily ECG or PPG Signals
,”
Eng. Appl. Artif. Intell.
,
126
, Part A, p.
106799
.
49.
Marwan
,
N.
,
Wessel
,
N.
,
Meyerfeldt
,
U.
,
Schirdewan
,
A.
, and
Kurths
,
J.
,
2002
, “
Recurrence-Plot-Based Measures of Complexity and Their Application to Heart-Rate-Variability Data
,”
Phys. Rev. E
,
66
(
2
), p.
026702
.
50.
Zhang
,
Y. Z.
,
Yang
,
Z. H.
,
Song
,
K. X.
,
Pang
,
X. J.
, and
Bao
,
S. G.
,
2013
, “
Triboelectric Behaviors of Materials Under High Speeds and Large Currents
,”
Friction
,
1
(
3
), pp.
259
270
.
51.
Wang
,
F.
,
Li
,
Z. S.
, and
Liao
,
G. P.
,
2014
, “
Multifractal Detrended Fluctuation Analysis for Image Texture Feature Representation
,”
Int. J. Pattern. Recogn.
,
28
(
3
), p.
1455005
.
52.
Ţălu
,
Ş
,
Marković
,
Z.
,
Stach
,
S.
,
Todorović Marković
,
B.
, and
Ţălu
,
M.
,
2014
, “
Multifractal Characterization of Single Wall Carbon Nanotube Thin Films Surface Upon Exposure to Optical Parametric Oscillator Laser Irradiation
,”
Appl. Surf. Sci.
,
289
, pp.
97
106
.
53.
Zuo
,
X.
,
Xie
,
W. X.
, and
Zhou
,
Y. K.
,
2022
, “
Influence of Electric Current on the Wear Topography of Electrical Contact Surfaces
,”
ASME J. Tribol.
,
144
(
7
), p.
071702
.
You do not currently have access to this content.