Abstract

Electric vehicle (EV) technology has matured over time, improving in some performance areas against traditional internal combustion engine (ICE) vehicles. Despite advancement, there are considerable opportunities for further improvements, particularly in the broader field of lubrication, including areas like grease. As in any mechanical system, greases and lubricants play a significant role in the component life of EV power plants and drivetrains. Moreover, they can significantly contribute to vehicle efficiency, energy savings, and overall driving experience. Since the lubricants in EVs work under harsh thermal and electrical environments, designing an ideal high performance and stable lubricant can be challenging. This article evaluates the industry's progress on EV lubrication including analyzing existing lithium-based lubricants and spotlighting advanced material additives such as graphene, boron nitride, or cutting-edge ionic liquids. It also discusses optimizing base stock selection, with a focus on polyalphaolefin (PAO) molecules and designing various additives to enhance the lubricant's performance, targeting EV applications. This article concludes by exploring the development of nanotechnology and advanced biotechnology for water-based lubricants, promoting efficient lubrication in the electric vehicle sector.

References

1.
Ritchie
,
H.
,
2020
,
Breakdown of Carbon Dioxide, Methane and Nitrous Oxide Emissions by Sector
,
Our World in Data
. https://ourworldindata.org/emissions-by-sector
2.
Alternative Fuels Data Center
,
2022
,
Electric Vehicles with Final Assembly in North America
,
Alternative Fuels Data Center
. https://afdc.energy.gov/laws/electric-vehicles-for-tax-credit
3.
Sylvia
,
T.
,
2020
,
The Future of Cars Is Electric – But How Soon Is This Future?
Pv Magazine International
. https://www.pvmagazine.com/2020/11/26/the-future-of-cars-is-electric-but-how-soon-is-this-future/
4.
Yufeng
,
K.
,
2022
,
$30 Million in Rebates given out Last Year under EV Early Adoption Incentive Scheme
,
The Straits Times
,
Singapore
. https://www.straitstimes.com/singapore/politics/30-million-in-rebates-given-out-last-year-under-ev-earlyadoption-incentive-scheme
5.
Holmberg
,
K. E.
,
2017
, “
Influence of Tribology on Global Energy Consumption, Costs and Emissions
,”
Friction
,
5
(
3
), pp.
263
284
.
6.
IEA
,
2015
,
Key World Energy Statistics
,
International Energy Agency
,
Paris
.
7.
Kalin
,
M.
,
Polajnar
,
M.
,
Kus
,
M.
, and
Majdič
,
F.
,
2019
, “
Green Tribology for the Sustainable Engineering of the Future
,”
Stroj. Vestn./J. Mech. Eng.
,
65
(
11–12
), pp.
709
727
.
8.
Holmberg
,
K. E.
, and
Erdemir
,
A.
,
2019
, “
The Impact of Tribology on Energy Use and CO2 Emission Globally and in Combustion Engine and Electric Cars
,”
Tribol. Int.
,
135
, pp.
389
396
.
9.
Rawat
,
S. S.
, and
Harsha
,
A. P.
,
2019
, “Current and Future Trends in Grease Lubrication,”
Automotive Triboloogy. Energy, Environment, and Sustainability
,
J.
Katiyar
,
S.
Bhattacharya
,
V.
Patel
, and
V.
Kumar
, eds.,
Springer
,
Singapore
, pp.
147
182
.
10.
Perlangeli
,
A.
,
2017
, “
Impact of Electric Vehicles on Lubricants Demand
,”
McKinsey Energy Insights
.
11.
Johnson
,
R. W.
,
Evans
,
J. L.
,
Jacobsen
,
P.
,
Thompson
,
J. R.
, and
Christopher
,
M.
,
2004
, “
The Changing Automotive Environment: High-Temperature Electronics
,”
IEEE Trans. Electron. Packag. Manuf.
,
27
(
3
), pp.
164
176
.
12.
Iino
,
M.
,
Tada
,
A.
,
Masuda
,
K.
, and
Matsuki
,
S.
,
2021
, “
Drivetrain Lubricants With High Cooling and Efficiency-Boosting Properties for Electric Vehicles
,”
SAE Technical Paper 2021-01-1215
.
13.
Christensen
,
G.
,
Yang
,
J.
,
Lou
,
D.
,
Hong
,
G.
,
Hong
,
H.
,
Tolle
,
C.
,
Widener
,
C.
,
Bailey
,
C.
,
Hrabe
,
R.
, and
Younes
,
H.
,
2020
, “
Carbon Nanotubes Grease With High Electrical Conductivity
,”
Synth. Met.
,
268
, p.
116496
.
14.
Eriksson
,
E.
,
Nygård
,
S.
, and
Lundberg
,
J.
,
2002
, “
Electrical Resistivity and Conductivity of Greases: An Initial Study
,”
Lubr. Sci.
,
15
(
1
), pp.
33
49
.
15.
Wu
,
L.
,
Yan
,
J.
,
Cao
,
Z.
,
Xia
,
Y.
, and
Wu
,
H.
,
2022
, “
Investigation on the Electrical Conductivity and Tribological Properties of NbSe2-Doped Lubricating Grease
,”
Mater. Res. Express
,
9
(
8
), p.
085201
.
16.
Shah
,
R.
,
Gashi
,
B.
, and
Rosenkranz
,
A.
,
2022
, “
Latest Developments in Designing Advanced Lubricants and Greases for Electric Vehicles—An Overview
,”
Lubr. Sci.
,
34
(
8
), pp.
515
526
.
17.
Wang
,
Y.
,
Shi
,
N.
,
Liu
,
M.
,
Han
,
S.
, and
Yan
,
J.
,
2023
, “
Enhanced Thermally Conductive Silicone Grease by Modified Boron Nitride
,”
Lubricants
,
11
(
5
), p.
198
.
18.
Arole
,
K.
,
Tajedini
,
M.
,
Sarmah
,
A.
,
Athavale
,
S.
,
Green
,
M. J.
, and
Liang
,
H.
,
2023
, “
Effects of Ti3C2Tz MXene Nanoparticle Additive on Fluidic Properties and Tribological Performance
,”
J. Mol. Liq.
,
386
, p.
122435
.
19.
Thrush
,
S. J.
,
Comfort
,
A. S.
,
Dusenbury
,
J. S.
,
Xiong
,
Y.
,
Qu
,
H.
,
Han
,
X.
,
Schall
,
J. D.
,
Barber
,
G. C.
, and
Wang
,
X.
,
2020
, “
Stability, Thermal Conductivity, Viscosity, and Tribological Characterization of Zirconia Nanofluids as a Function of Nanoparticle Concentration
,”
Tribol. Trans.
,
63
(
1
), pp.
68
76
.
20.
Sleiti
,
A. K.
,
2020
, “
Heat Transfer Measurements of Polyalpha-Olefin-Boron Nitride Nanofluids for Thermal Management and Lubrication Applications
,”
Case Stud. Therm. Eng.
,
22
, p.
100776
.
21.
Salam
,
M. A. R. B. A.
,
Rahman
,
M. A.
,
Kabir
,
M. H.
,
Alvarado
,
E. V.
,
Sadman
,
T.
,
Mahamud
,
R.
,
Cano
,
L.
, and
Ashraf
,
A.
,
2023
, “
Testing and Modeling of an In Situ Shear Exfoliated 2D Nanocomposite Coating Casing Material for the Suppression of Li-Ion Battery Fires in Electric Vehicles
,”
MRS Adv.
,
8
(
17
), pp.
953
959
.
22.
Fan
,
M.
,
Du
,
X.
,
Ma
,
L.
,
Wen
,
P.
,
Zhang
,
S.
,
Dong
,
R.
,
Sun
,
W.
,
Yang
,
D.
,
Zhou
,
F.
, and
Liu
,
W.
,
2019
, “
In Situ Preparation of Multifunctional Additives in Water.
,”
Tribol. Int.
,
130
, pp.
317
323
.
23.
Hunt
,
G. J.
,
Gahagan
,
M. P.
, and
Peplow
,
M. A.
,
2017
, “
Wire Resistance Method for Measuring the Corrosion of Copper by Lubricating Fluids
,”
Lubr. Sci.
,
29
(
4
), pp.
279
290
.
24.
Gao
,
X. Y.
,
Lu
,
P.
,
Xu
,
Z. M.
, and
Tang
,
G. G.
,
2022
, “
Synthesis and Tribological Properties of MXene/TiO2/MoS2 Nanocomposite
,”
Chalcogenide Lett.
,
19
, pp.
513
527
.
25.
Kabir
,
M. H.
,
Dias
,
D.
,
Arole
,
K.
,
Bahrami
,
R.
,
Sue
,
H. J.
, and
Liang
,
H.
,
2024
, “
Hydrophilized MoS2 as Lubricant Additive
,”
Lubricants
,
12
(
3
), p.
80
.
26.
Lin
,
B.
,
Rustamov
,
I.
,
Zhang
,
L.
,
Luo
,
J.
, and
Wan
,
X.
,
2020
, “
Graphene-Reinforced Lithium Grease for Antifriction and Antiwear
,”
ACS Appl. Nano Mater.
,
3
(
10
), pp.
10508
10521
.
27.
Bagi
,
S. D.
, and
Aswath
,
P. B.
,
2015
, “
Mechanism of Friction and Wear in MoS2 and ZDDP/F-PTFE Greases Under Spectrum Loading Conditions
,”
Lubricants
,
3
(
4
), pp.
687
711
.
28.
Vazirisereshk
,
M. R.
,
Martini
,
A.
,
Strubbe
,
D. A.
, and
Baykara
,
M. Z.
,
2019
, “
Solid Lubrication With MoS2: A Review
,”
Lubricants
,
7
(
7
), p.
57
.
29.
Tang
,
T.
,
Devlin
,
M.
,
Mathur
,
N.
,
Henly
,
T.
, and
Saathoff
,
L.
,
2013
, “
Lubricants for (Hybrid) Electric Transmissions
,”
SAE Int. J. Fuels Lubr.
,
6
(
2
), pp.
289
294
.
30.
Shah
,
R.
,
Tung
,
S.
,
Chen
,
R.
, and
Miller
,
R.
,
2021
, “
Grease Performance Requirements and Future Perspectives for Electric and Hybrid Vehicle Applications
,”
Lubricants
,
9
(
4
), p.
40
.
31.
Fitch
,
E. C.
,
2019
, “
Temperature Stability of Lubricants and Hydraulic Fluids
,”
Machinery Lubrication
, https://www.machinerylubrication.com/Read/367/temperature-stability
32.
Xie
,
G. X.
,
Luo
,
J. B.
,
Liu
,
S. H.
,
Zhang
,
C. H.
,
Lu
,
X. C.
, and
Guo
,
D.
,
2008
, “
Effect of External Electric Field on Liquid Film Confined Within Nanogap
,”
J. Appl. Phys.
,
103
(
9
), p.
094306
.
33.
Shah
,
R.
,
Gashi
,
B.
,
González-Poggini
,
S.
,
Colet-Lagrille
,
M.
, and
Rosenkranz
,
A.
,
2021
, “
Recent Trends in Batteries and Lubricants for Electric Vehicles
,”
Adv. Mech. Eng.
,
13
(
5
), p.
168781402110217
.
34.
Chen
,
Y.
,
Jha
,
S.
,
Raut
,
A.
,
Zhang
,
W.
, and
Liang
,
H.
,
2020
, “
Performance Characteristics of Lubricants in Electric and Hybrid Vehicles: A Review of Current and Future Needs
,”
Front. Mech. Eng.
,
6
, p.
571464
.
35.
Lynch
,
J.
,
2021
, “
Copper’s Role in Growing Electric Vehicle Production
,”
Open Markets
, https://www.cmegroup.com/openmarkets/commodities/2021/copper-role-in-electric-vehicle-production.html
36.
Afanasiev
,
P.
, and
Lorentz
,
C.
,
2019
, “
Oxidation of Nanodispersed MoS2 in Ambient Air: The Products and the Mechanistic Steps
,”
J. Phys. Chem. C
,
123
(
12
), pp.
7486
7494
.
37.
Wu
,
P. R.
,
Kong
,
Y. C.
,
Ma
,
Z. S.
,
Ge
,
T.
,
Feng
,
Y. M.
,
Liu
,
Z.
, and
Cheng
,
Z. L.
,
2018
, “
Preparation and Tribological Properties of Novel Zinc Borate/MoS2 Nanocomposites in Grease
,”
J. Alloys Compd.
,
740
, pp.
823
829
.
38.
Vaitkunaite
,
G.
,
Espejo
,
C.
,
Wang
,
C.
,
Thiébaut
,
B.
,
Charrin
,
C.
,
Neville
,
A.
, and
Morina
,
A.
,
2020
, “
MoS2 Tribofilm Distribution From Low Viscosity Lubricants and Its Effect on Friction
,”
Tribol. Int.
,
151
, p.
106531
.
39.
Lugt
,
P. M.
,
2009
, “
A Review on Grease Lubrication in Rolling Bearings
,”
Tribol. Trans.
,
52
(
4
), pp.
470
480
.
40.
Andrew
,
J. M.
,
2019
, “
The Future of Lubricating Greases in the Electric Vehicle Era
,”
Tribology and Lubrication Technology
, pp.
38
44
. https://www.stle.org/files/TLTArchives/2019/05_May/Feature.aspx
41.
Kavanagh
,
L.
,
Keohane
,
J.
,
Cabellos
,
G. G.
,
Lloyd
,
A.
, and
Cleary
,
J.
,
2018
, “
Global Lithium Sources-Industrial Use and Future in the Electric Vehicle Industry: A Review
,”
Resources
,
7
(
3
), p.
57
.
42.
Ge
,
X.
,
Chai
,
Z.
,
Shi
,
Q.
,
Liu
,
Y.
, and
Wang
,
W.
,
2023
, “
Graphene Superlubricity: A Review
,”
Friction
,
11
(
11
), pp.
1953
1973
.
43.
Abergel
,
D. S. L.
,
Apalkov
,
V.
,
Berashevich
,
J.
,
Ziegler
,
K.
, and
Chakraborty
,
T.
,
2010
, “
Properties of Graphene: A Theoretical Perspective
,”
Adv. Phys.
,
59
(
4
), pp.
261
482
.
44.
Morhard
,
B.
,
Schweigert
,
D.
,
Mileti
,
M.
,
Sedlmair
,
M.
,
Lohner
,
T.
, and
Stahl
,
K.
,
2021
, “
Efficient Lubrication of a High-Speed Electromechanical Powertrain With Holistic Thermal Management
,”
Forsch. Ingenieurwes./Eng. Res.
,
85
(
2
), pp.
443
456
.
45.
Uddin
,
M. M.
,
Kabir
,
M. H.
,
Ali
,
M. A.
,
Hossain
,
M. M.
,
Khandaker
,
M. U.
,
Mandal
,
S.
,
Arifutzzaman
,
A.
, and
Jana
,
D.
,
2023
, “
Graphene-Like Emerging 2D Materials: Recent Progress, Challenges and Future Outlook
,”
RSC Adv.
,
13
(
47
), pp.
33336
33375
.
46.
Castro Neto
,
A. H.
,
Guinea
,
F.
,
Peres
,
N. M. R.
,
Novoselov
,
K. S.
, and
Geim
,
A. K.
,
2009
, “
The Electronic Properties of Graphene
,”
Rev. Mod. Phys.
,
81
(
1
), pp.
109
162
.
47.
De Laurentis
,
N.
,
Kadiric
,
A.
,
Lugt
,
P.
, and
Cann
,
P.
,
2016
, “
The Influence of Bearing Grease Composition on Friction in Rolling/Sliding Concentrated Contacts
,”
Tribol. Int.
,
94
, pp.
624
632
.
48.
Jin
,
B.
,
Chen
,
G.
,
Zhao
,
J.
,
He
,
Y.
,
Huang
,
Y.
, and
Luo
,
J.
,
2021
, “
Improvement of the Lubrication Properties of Grease With Mn3O4/Graphene (Mn3O4#G) Nanocomposite Additive
,”
Friction
,
9
(
6
), pp.
1361
1377
.
49.
Priest
,
M.
, and
Taylor
,
C. M.
,
2000
, “
Automobile Engine Tribology – Approaching the Surface
,”
Wear
,
241
, pp.
193
203
.
50.
Köhne
,
M.
, and
Rizzi
,
L.
,
2021
, “Global, B. Can Graphene-Based Conductors Compete With Copper in Electrical Conductivity?,”
Bosch Research Blog
, https://www.bosch.com/stories/can-graphene-compete-with-copper-in-electrical-conductivity
51.
Li
,
J.
,
Sun
,
Y.
,
Sun
,
X.
, and
Qiao
,
J.
,
2005
, “
Mechanical and Corrosion-Resistance Performance of Electrodeposited Titania – Nickel Nanocomposite Coatings
,”
Surf. Coat. Technol.
,
192
(
2–3
), pp.
331
335
.
52.
Kumar
,
G. B. V.
,
Pramod
,
R.
,
Sekhar
,
C. G.
,
Kumar
,
G. P.
, and
Bhanumurthy
,
T.
,
2019
, “
Investigation of Physical, Mechanical and Tribological Properties of Al6061–ZrO2 Nano-Composites
,”
Heliyon
,
5
(
11
), p.
e02858
.
53.
Nabhan
,
A.
,
Ameer
,
A. K.
,
Badran
,
A.
, and
Rashed
,
A.
,
2021
, “
Tribological Behavior and Performance of Lubricants Filled With Nanoparticles
,”
Am. J. Eng. Res.
,
10
, pp.
230
236
. https://ajer.org/papers/Vol-10-issue-1/Y1001230236.pdf
54.
Wozniak
,
M.
,
Siczek
,
K.
,
Kubiak
,
P.
,
Jozwiak
,
P.
, and
Siczek
,
K.
,
2018
, “
Researches on Tie Rod Ends Lubricated by Grease With TiO2 and ZrO2 Nanoparticles
,”
J. Phys.: Conf. Ser.
,
1033
, p.
012006
.
55.
Xia
,
X.
,
Zhang
,
Y.
,
Zhang
,
Y.
, and
Chen
,
S.
,
2010
, “
Influence of ZrO2 Nanoparticle as Additive on Tribological Property of Lithium Grease
,”
Appl. Mech. Mater.
,
26–28
, pp.
83
87
.
56.
Chang
,
H.
,
Lan
,
C. W.
,
Chen
,
C. H.
,
Kao
,
M. J.
, and
Guo
,
J. B.
,
2014
, “
Anti-Wear and Friction Properties of Nanoparticles as Additives in the Lithium Grease
,”
Int. J. Precis. Eng. Manuf.
,
15
(
10
), pp.
2059
2063
.
57.
Wu
,
C.
,
Li
,
S.
,
Chen
,
Y.
,
Yao
,
L.
,
Li
,
X.
, and
Ni
,
J.
,
2023
, “
Tribological Properties of Chemical Composite and Physical Mixture of ZnO and SiO2 Nanoparticles as Grease Additives
,”
Appl. Surf. Sci.
,
612
, p.
155932
.
58.
Zhao
,
Q.
,
Zhao
,
G.
,
Zhang
,
M.
,
Wang
,
X.
, and
Liu
,
W.
,
2012
, “
Tribological Behavior of Protic Ionic Liquids With Dodecylamine Salts of Dialkyldithiocarbamate as Additives in Lithium Complex Grease
,”
Tribol. Lett.
,
48
(
2
), pp.
133
144
.
59.
Wang
,
Z.
,
Chang
,
J.
, and
Cai
,
C.
,
2018
, “
Tribological Performance of Phosphonium Ionic Liquids as Additives in Lithium Lubricating Grease
,”
Lubricants
,
6
(
1
), p.
23
.
60.
Lotfi
,
B.
,
2022
, “How Synthetic Base Oils Can Help Create Novel E-Mobility Fluid Formulations,” https://www.exxonmobilchemical.com/en/products/synthetic-base-stocks/electric-vehicle-fluids
61.
Calderon Salmeron
,
G.
,
Leckner
,
J.
,
Schwack
,
F.
,
Westbroek
,
R.
, and
Glavatskih
,
S.
,
2022
, “
Greases for Electric Vehicle Motors: Thickener Effect and Energy Saving Potential
,”
Tribol. Int.
,
167
, p.
107400
.
62.
Calderon Salmeron
,
G.
,
Leckner
,
J.
,
Westbroek
,
R.
,
Chanamolu
,
B.
, and
Glavatskih
,
S.
,
2024
, “
Greases for Electric Vehicle Motors: Bearing Friction Torque Under Driving Cycle Conditions and the Thickener Effect on the Oil Release
,”
Tribol. Int.
,
198
, p.
109777
.
63.
Liu
,
X.
,
Zhang
,
J.
,
Zhang
,
L.
,
Feng
,
Y.
,
Feng
,
M.
,
Luo
,
N.
, and
Wang
,
D.
,
2022
, “
Influence of Interface Liquid Lubrication on Triboelectrification of Point Contact Friction Pair
,”
Tribol. Int.
,
165
, p.
107323
.
64.
Kuzhyil
,
N.
, and
Tian
,
W.
,
2023
, “
High-Performance Basestock Technology for Automotive and Industrial Greases
,”
NLGI 90th Meeting
,
San Diego, CA
,
June 7–10
.
65.
Yang
,
G.
,
Zhang
,
J.
,
Zhang
,
S.
,
Yu
,
L.
,
Zhang
,
P.
, and
Zhu
,
B.
,
2013
, “
Preparation of Triazine Derivatives and Evaluation of Their Tribological Properties as Lubricant Additives in Poly-Alpha Olefin
,”
Tribol. Int.
,
62
, pp.
163
170
.
66.
Dong
,
Y.
,
Ma
,
B.
,
Xiong
,
C.
,
Liu
,
Y.
, and
Zhao
,
Q.
,
2023
, “
Study on the Lubricating Characteristics of Graphene Lubricants
,”
Lubricants
,
11
(
12
), p.
506
.
67.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.
68.
Wu
,
F.
,
Tian
,
H.
,
Shen
,
Y.
,
Zhu
,
Z. Q.
,
Liu
,
Y.
,
Hirtz
,
T.
,
Wu
,
R.
, et al
,
2022
, “
High Thermal Conductivity 2D Materials: From Theory and Engineering to Applications
,”
Adv. Mater. Interfaces
,
9
(
21
), p.
2200409
.
69.
Kabir
,
M. H.
,
Hossain
,
M. Z.
,
Jalil
,
M. A.
,
Ghosh
,
S.
,
Hossain
,
M. M.
,
Ali
,
M. A.
,
Khandaker
,
M. U.
, et al
,
2024
, “
The Efficacy of Rare-Earth Doped V2O5 Photocatalyst for Removal of Pollutants From Industrial Wastewater
,”
Opt. Mater.
,
147
, p.
114724
.
70.
Kabir
,
M. H.
,
Hossain
,
M. M.
,
Ali
,
M. A.
,
Uddin
,
M. M.
,
Ali
,
M. L.
,
Hasan
,
M. Z.
,
Islam
,
A. K. M. A.
, and
Naqib
,
S. H.
,
2023
, “
First Principles Study of Mechanical, Thermal, Electronic, Optical and Superconducting Properties of C40-Type Germanide-Based MGe2 (M=V, Nb and Ta)
,”
Results Phys.
,
51
, p.
106701
.
71.
Peng
,
Y.
,
Hu
,
Y.
, and
Wang
,
H.
,
2007
, “
Tribological Behaviors of Surfactant-Functionalized Carbon Nanotubes as Lubricant Additive in Water
,”
Tribol. Lett.
,
25
(
3
), pp.
247
253
.
72.
Ye
,
X.
,
Ma
,
L.
,
Yang
,
Z.
,
Wang
,
J.
,
Wang
,
H.
, and
Yang
,
S.
,
2016
, “
Covalent Functionalization of Fluorinated Graphene and Subsequent Application as Water-Based Lubricant Additive
,”
ACS Appl. Mater. Interfaces
,
8
(
11
), pp.
7483
7488
.
73.
Ali
,
M. K. A.
,
Hou
,
X.
, and
Abdelkareem
,
M. A. A.
,
2020
, “
Anti-Wear Properties Evaluation of Frictional Sliding Interfaces in Automobile Engines Lubricated by Copper/Graphene Nanolubricants
,”
Friction
,
8
(
5
), pp.
905
916
.
74.
Ahmed Abdalglil Mustafa
,
W.
,
Dassenoy
,
F.
,
Sarno
,
M.
, and
Senatore
,
A.
,
2021
, “
A Review on Potentials and Challenges of Nanolubricants as Promising Lubricants for Electric Vehicles
,”
Lubr. Sci.
,
34
(
1
), pp.
1
29
.
75.
Uppar
,
R.
,
Dinesha
,
P.
, and
Kumar
,
S.
,
2023
, “
A Critical Review on Vegetable Oil-Based Bio-Lubricants: Preparation, Characterization, and Challenges
,”
Environ. Dev. Sustain.
,
25
(
9
), pp.
9011
9046
.
76.
Omrani
,
E.
,
Siddaiah
,
A.
,
Moghadam
,
A. D.
,
Garg
,
U.
,
Rohatgi
,
P.
, and
Menezes
,
P. L.
,
2021
, “
Ball Milled Graphene Nano Additives for Enhancing Sliding Contact in Vegetable Oil
,”
Nanomaterials
,
11
(
3
), p.
610
.
77.
Wang
,
Y.
,
Wan
,
Z.
,
Lu
,
L.
,
Zhang
,
Z.
, and
Tang
,
Y.
,
2018
, “
Friction and Wear Mechanisms of Castor Oil With Addition of Hexagonal Boron Nitride Nanoparticles
,”
Tribol. Int.
,
124
, pp.
10
22
.
78.
Xie
,
M.
,
Cheng
,
J.
,
Huo
,
C.
, and
Zhao
,
G.
,
2020
, “
Improving the Lubricity of a Bio-Lubricating Grease With the Multilayer Graphene Additive
,”
Tribol. Int.
,
150
, p.
106386
.
79.
Vafaei
,
S.
,
Fischer
,
D.
,
Jopen
,
M.
,
Jacobs
,
G.
,
König
,
F.
, and
Weberskirch
,
R.
,
2021
, “
Investigation of Tribological Behavior of Lubricating Greases Composed of Different Bio-Based Polymer Thickeners
,”
Lubricants
,
9
(
8
), p.
80
.
80.
Martín Alfonso
,
J. E.
,
Yañez
,
R.
,
Valencia
,
C.
,
Franco
,
J. M.
, and
Díaz
,
M. J.
,
2009
, “
Optimization of the Methylation Conditions of Kraft Cellulose Pulp for Its Use as a Thickener Agent in Biodegradable Lubricating Greases
,”
Ind. Eng. Chem. Res.
,
48
(
14
), pp.
6765
6771
.
81.
Singleton
,
R. K.
,
Strangas
,
E. G.
, and
Aviyente
,
S.
,
2017
, “
The Use of Bearing Currents and Vibrations in Lifetime Estimation of Bearings
,”
IEEE Trans. Ind. Inf.
,
13
(
3
), pp.
1301
1309
.
82.
Che Sidik
,
N. A.
,
Witri Mohd Yazid
,
M. N. A.
, and
Mamat
,
R.
,
2017
, “
Recent Advancement of Nanofluids in Engine Cooling System
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
137
144
.
83.
Prasanna Shankara
,
R.
,
Banapurmath
,
N. R.
,
D'Souza
,
A.
,
Sajjan
,
A. M.
,
Ayachit
,
N. H.
,
Yunus Khan
,
T. M.
,
Badruddin
,
I. A.
, and
Kamangar
,
S.
,
2022
, “
An Insight Into the Performance of Radiator System Using Ethylene Glycol-Water Based Graphene Oxide Nanofluids
,”
Alexandria Eng. J.
,
61
(
7
), pp.
5155
5167
.
84.
Wang
,
X.
,
Li
,
C.
,
Gong
,
K.
, and
Wu
,
X.
,
2023
, “
Surface-Modified MoS2 Nanoparticles as Tribological Additives in a Glycerol Solution
,”
ACS Appl. Nano Mater.
,
6
(
8
), pp.
6662
6669
.
85.
Li
,
L.
,
Gong
,
P.
,
Bai
,
P.
,
Wen
,
X.
,
Meng
,
Y.
,
Ding
,
J.
, and
Tian
,
Y.
,
2023
, “
Impact of Water Content on the Superlubricity of Ethylene Glycol Solutions
,”
Lubricants
,
11
(
11
), p.
466
.
86.
Rahman
,
M. H.
,
Warneke
,
H.
,
Webbert
,
H.
,
Rodriguez
,
J.
,
Austin
,
E.
,
Tokunaga
,
K.
,
Rajak
,
D. K.
, and
Menezes
,
P. L.
,
2021
, “
Water-Based Lubricants: Development, Properties, and Performances
,”
Lubricants
,
9
(
8
), p.
73
.
87.
Min
,
C.
,
He
,
Z.
,
Liu
,
D.
,
Zhang
,
K.
, and
Dong
,
C.
,
2019
, “
Urea Modified Fluorinated Carbon Nanotubes: Unique Self-Dispersed Characteristic in Water and High Tribological Performance as Water-Based Lubricant Additives
,”
New J. Chem.
,
43
(
37
), pp.
14684
14693
.
88.
Yang
,
Z.
,
Guo
,
Z.
, and
Yuan
,
C.
,
2019
, “
Effects of MoS2 Microencapsulation on the Tribological Properties of a Composite Material in a Water-Lubricated Condition
,”
Wear
,
432–433
, p.
102919
.
You do not currently have access to this content.