Graphical Abstract Figure

Flowchart of the CFD and FSI calculations

Graphical Abstract Figure

Flowchart of the CFD and FSI calculations

Close modal

Abstract

High-viscosity plastic fluids and polymer liners are expected to improve the lubrication and load-carrying performance of low-speed and heavy-load journal bearings. The objective of this article is to investigate the elastohydrodynamic lubrication performance of compliant journal bearings lubricated with non-Newtonian plastic fluids (following the Herschel–Bulkley model) using computational fluid dynamics (CFD) and fluid–structure interaction (FSI) methods. The following data are obtained: fluid film pressure, total bearing deformation, cavitation volume fraction, bearing capacity, and coefficient of friction. The simulation results closely agree with the data reported in the existing literature. A comparative analysis of the lubrication characteristics of journal bearings with Babbitt metal, PEEK, and PTFE liners at various rotational speeds is presented. The effects of yield stress, power-law index, elastic modulus, and liner thickness on the lubrication characteristics are investigated. The results indicate that the power-law index of non-Newtonian plastic fluids has a greater influence on bearing lubrication performance than the yield stress. Increasing the power-law index could improve the bearing capacity and reduce the coefficient of friction. This research provides a theoretical basis for the application of non-Newtonian plastic fluid-lubricated polymer journal bearings in low-speed and heavy-load equipment.

References

1.
Sun
,
H. G.
,
Jiang
,
Y. H.
,
Zhang
,
Y.
, and
Jiang
,
L. J.
,
2024
, “
A Review of Constitutive Models for Non-Newtonian Fluids
,”
Fract. Calc. Appl. Anal.
,
27
(
4
), pp.
1483
1526
.
2.
Jang
,
J. Y.
, and
Khonsari
,
H. M.
,
2001
, “
On the Thermohydrodynamic Analysis of a Bingham Fluid in Slider Bearings
,”
Acta Mech.
,
148
(
1–4
), pp.
165
185
.
3.
Gertzos
,
K. P.
,
Nikolakopoulos
,
P. G.
, and
Papadopoulos
,
C. A.
,
2008
, “
CFD Analysis of Journal Bearing Hydrodynamic Lubrication by Bingham Lubricant
,”
Tribol. Int.
,
41
(
12
), pp.
1190
1204
.
4.
Lampaert
,
S. G. E.
, and
van Ostayen
,
R. A. J.
,
2020
, “
Lubrication Theory for Bingham Plastics
,”
Tribol. Int.
,
147
(
7
), p.
106160
.
5.
Silva
,
F. V.
,
Zanardi
,
M. A.
, and
de Souza
,
T. M.
,
2021
, “
Analytical-Numerical Modeling of Journal Bearings With Non-Newtonian Fluids and Cavitation Effects
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
12
), p.
525
.
6.
Cahyo
,
N.
,
Paryanto
,
P.
,
Nugraha
,
A. D.
,
Simaremare
,
A.
,
Aditya
,
I. A.
,
Siregar
,
B. S. L.
, and
Tauviqirrahman
,
M.
,
2022
, “
Effect of Engineered Roughness on the Performance of Journal Bearings Lubricated by Bingham Plastic Fluid Using Computational Fluid Dynamics (CFD)
,”
Lubricants
,
10
(
12
), p.
333
.
7.
Osman
,
T. A.
,
2004
, “
Effect of Lubricant Non-Newtonian Behavior and Elastic Deformation on the Dynamic Performance of Finite Journal Plastic Bearings
,”
Tribol. Lett.
,
17
(
1
), pp.
31
40
.
8.
Lahmar
,
M.
,
Ellagoune
,
S.
, and
Bou-Saïd
,
B.
,
2010
, “
Elastohydrodynamic Lubrication Analysis of a Compliant Journal Bearing Considering Static and Dynamic Deformations of the Bearing Liner
,”
Tribol. Trans.
,
53
(
3
), pp.
349
368
.
9.
Thomsen
,
K.
, and
Klit
,
P.
,
2011
, “
A Study on Compliant Layers and Its Influence on Dynamic Response of a Hydrodynamic Journal Bearing
,”
Tribol. Int.
,
44
(
12
), pp.
1872
1877
.
10.
Kuznetsov
,
E.
,
Glavatskih
,
S.
, and
Fillon
,
M.
,
2011
, “
THD Analysis of Compliant Journal Bearings Considering Liner Deformation
,”
Tribol. Int.
,
44
(
12
), pp.
1629
1641
.
11.
Kuznetsov
,
E.
, and
Glavatskih
,
S.
,
2016
, “
Dynamic Characteristics of Compliant Journal Bearings Considering Thermal Effects
,”
Tribol. Int.
,
94
(
2
), pp.
288
305
.
12.
Cha
,
M.
,
Kuznetsov
,
E.
, and
Glavatskih
,
S.
,
2013
, “
A Comparative Linear and Nonlinear Dynamic Analysis of Compliant Cylindrical Journal Bearings
,”
Mech. Mach. Theory
,
64
(
6
), pp.
80
92
.
13.
Lv
,
F. R.
,
Jiao
,
C. X.
,
Jia
,
Q.
, and
Xia
,
K.
,
2022
, “
Influence of Structural and Operating Parameters on Lubrication Performance of Water-Lubricated Polymer Bearing With Journal Misalignment
,”
Lubricants
,
10
(
12
), p.
336
.
14.
Zhu
,
S. Y.
,
Zhang
,
X. J.
,
Sun
,
J.
, and
Wang
,
D. G.
,
2023
, “
A Study of Misaligned Compliant Journal Bearings Lubricated by Non-Newtonian Fluid Considering Surface Roughness
,”
Tribol. Int.
,
179
(
1
), p.
108138
.
15.
Liu
,
H. P.
,
Xu
,
H.
,
Ellison
,
P. J.
, and
Jin
,
Z. M.
,
2010
, “
Application of Computational Fluid Dynamics and Fluid-Structure Interaction Method to the Lubrication Study of a Rotor-Bearing System
,”
Tribol. Lett.
,
38
(
3
), pp.
325
336
.
16.
Li
,
Q.
,
Yu
,
G. C.
,
Liu
,
S. L.
, and
Zheng
,
S. Y.
,
2012
, “
Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled With Rotor Systems
,”
Chin. J. Mech. Eng.
,
25
(
5
), pp.
926
932
.
17.
Lin
,
Q. Y.
,
Wei
,
Z. Y.
,
Wang
,
N.
, and
Chen
,
W.
,
2013
, “
Analysis on the Lubrication Performances of Journal Bearing System Using Computational Fluid Dynamics and Fluid-Structure Interaction Considering Thermal Influence and Cavitation
,”
Tribol. Int.
,
64
(
8
), pp.
8
15
.
18.
Lin
,
Q. Y.
,
Bao
,
Q. K.
,
Li
,
K. J.
,
Khonsari
,
M. M.
, and
Zhao
,
H.
,
2018
, “
An Investigation Into the Transient Behavior of Journal Bearing With Surface Texture Based on Fluid-Structure Interaction Approach
,”
Tribol. Int.
,
118
(
2
), pp.
246
255
.
19.
Wang
,
Y. Z.
,
Yin
,
Z. W.
,
Jiang
,
D.
,
Gao
,
G. Y.
, and
Zhang
,
X. L.
,
2016
, “
Study of the Lubrication Performance of Water-Lubricated Journal Bearings With CFD and FSI Method
,”
Ind. Lubr. Tribol.
,
68
(
3
), pp.
341
348
.
20.
Chen
,
Y.
,
Sun
,
Y.
,
He
,
Q.
, and
Feng
,
J.
,
2019
, “
Elastohydrodynamic Behavior Analysis of Journal Bearing Using Fluid-Structure Interaction Considering Cavitation
,”
Arab. J. Sci. Eng.
,
44
(
2
), pp.
1305
1320
.
21.
Liang
,
X. X.
,
Yan
,
X. P.
,
Liu
,
Z. L.
, and
Ouyang
,
W.
,
2019
, “
Effect of Perturbation Amplitudes on Water Film Stiffness Coefficients of Water-Lubricated Plain Journal Bearings Based on CFD-FSI Methods
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
233
(
7
), pp.
1003
1015
.
22.
Tauviqirrahman
,
M.
,
Ichsan
,
B. C.
,
Jamari
, and
Muchammad
,
2019
, “
Influence of Roughness on the Behavior of Three-Dimensional Journal Bearing Based on Fluid-Structure Interaction Approach
,”
J. Mech. Sci. Technol.
,
33
(
10
), pp.
4783
4790
.
23.
Xie
,
Z. L.
,
Wang
,
X. R.
, and
Zhu
,
W. D.
,
2022
, “
Theoretical and Experimental Exploration Into the Fluid Structure Coupling Dynamic Behaviors Towards Water-Lubricated Bearing With Axial Asymmetric Grooves
,”
Mech. Syst. Signal Process.
,
168
(
4
), p.
108624
.
24.
Xie
,
Z. L.
,
Jiao
,
J.
, and
Wrona
,
S.
,
2023
, “
The Fluid-Structure Interaction Lubrication Performances of a Novel Bearing: Experimental and Numerical Study
,”
Tribol. Int.
,
179
(
1
), p.
108151
.
25.
Shen
,
Y. K.
,
Zhang
,
Y.
,
Zhang
,
X. L.
,
Zheng
,
H. Y.
,
Wei
,
G. R.
, and
Wang
,
M. Y.
,
2023
, “
A Fluid-Structure Interaction Method for the Elastohydrodynamic Lubrication Characteristics of Rubber-Plastic Double-Layer Water-Lubricated Journal Bearings
,”
Lubricants
,
11
(
6
), p.
240
.
26.
Abass
,
B. A.
,
Ahmed
,
S. Y.
, and
Kadhim
,
Z. H.
,
2023
, “
Thermoelasto-Hydrodynamic Analysis of Nano-Lubricated Journal Bearings Using Computational Fluid Dynamics With Two-Way Fluid-Structure Interaction Considering Cavitation
,”
Arabian J. Sci. Eng.
,
48
(
3
), pp.
2939
2950
.
27.
Harishkumar
,
K.
,
Chandrakant
,
R. K.
, and
Satish
,
B. S.
,
2023
, “
Effect of Cavitation and Temperature on Fluid Film Bearing Using CFD and FSI Technique: A Review
,”
Arch. Comput. Meth. Eng.
,
30
(
3
), pp.
1623
1636
.
28.
Wada
,
S.
,
Hayashi
,
H.
, and
Haga
,
K.
,
1974
, “
Behavior of a Bingham Solid in Hydrodynamic Lubrication (Part 3, Application to Journal Bearing)
,”
Bull. JSME
,
17
(
111
), pp.
1182
1191
.
You do not currently have access to this content.