Abstract

The relationship between the molecular structures of lubricant additives and their antiwear properties was assessed using 36 nitrogen-containing heterocyclic organic compounds to generate quantitative structure tribo-ability relationship (QSTR) models. In the modeling process, the molecular structure of the base oil was employed as the solvation factor, employing n-octadecane as a substitute for the liquid paraffin used to generate the original experimental data. Comparative molecular field analysis (CoMFA)-QSTR and comparative molecular similarity indices analysis (CoMSIA)-QSTR models incorporating solvation by n-octadecane were established and compared with QSTR models that did not involve solvation. The solvation CoMFA-QSTR and CoMSIA-QSTR models exhibited excellent fitting abilities and were highly robust when predicting lubricant performance. These models were superior to nonsolvation models in this regard. These models also generated useful information regarding potential changes to molecular structure to improve antiwear properties. Electrostatic fields were found to be very important factors in antiwear models. Because the original experiments used a nonpolar base oil, the solvation factor had no obvious effect on the antiwear characteristics of the polar additives and so the predictive abilities of the solvation and nonsolvation models were similar.

References

1.
Wen
,
S. Z.
,
1990
,
Principles of Tribology
,
Tsinghua University Press
,
Beijing, China
.
2.
Yan
,
S.
,
Ma
,
B.
,
Wang
,
X.
,
Chen
,
J.
, and
Zheng
,
C.
,
2020
, “
Maintenance Policy for Oil-Lubricated Systems With Oil Analysis Data
,”
Eksploat. i Niezawodn. Maint. Reliab.
,
22
(
3
), pp.
455
464
.
3.
Yang
,
G.
,
Zhang
,
J.
,
Zhang
,
S.
,
Yu
,
L.
, and
Zhu
,
B.
,
2013
, “
Preparation of Triazine Derivatives and Evaluation of Their Tribological Properties As Lubricant Additives in Poly-Alpha Olefin
,”
Tribol. Int.
,
62
, pp.
163
170
. .
4.
He
,
Z. Y.
,
Xiong
,
L. P.
,
Qian
,
L.
,
Han
,
S.
,
Chen
,
A. X.
,
Qiu
,
J. W.
, and
Fu
,
X. S.
,
2014
, “
Tribological Properties and Hydrolysis Stability Study of Benzothiazole Borate Derivative
,”
Lubr. Sci.
,
26
(
2
), pp.
81
94
.
5.
Ning
,
P. P.
,
Wang
,
L.
,
Wang
,
W. Y.
,
Li
,
S. Z.
, and
Ye
,
Z. X.
,
2015
, “
Tribological Studies on Two Novel Borate Esters With Nitrogen-Containing Heterocyclic and Alkanolamide As Multifunctional Additives in Rapeseed Oil
,”
J. Dispersion Sci. Technol.
,
37
(
5
), pp.
699
705
.
6.
Xiong
,
L. P.
,
He
,
Z. Y.
,
Han
,
S.
,
Tang
,
J.
,
Wu
,
Y. L.
, and
Zeng
,
X. Q.
,
2016
, “
Tribological Properties Study of N-Containing Heterocyclic Imidazoline Derivatives As Lubricant Additives in Water-Glycol
,”
Tribol. Int.
,
104
, pp.
98
108
. .
7.
Zhu
,
F. K.
,
Fan
,
W. X.
,
Wang
,
A. R.
, and
Zhu
,
Y.
,
2009
, “
Tribological Study of Novel S–N Style 1,3,4-Thiadiazole-2-Thione Derivatives in Rapeseed Oil
,”
Wear
,
266
(
1
), pp.
233
238
.
8.
Xiong
,
L. P.
,
He
,
Z. Y.
,
Han
,
S.
,
Hu
,
J. Q.
,
Xu
,
X.
,
Tang
,
J.
, and
Wu
,
Y. L.
,
2018
, “
Tribological Study of OH- and N-Containing Imidazoline Derivatives As Additives in Water–Glycol
,”
Proc. Inst. Mech. Eng. Part J
,
233
(
3
), pp.
466
480
.
9.
Gao
,
X. L.
,
Wang
,
R. T.
,
Wang
,
Z.
, and
Dai
,
K.
,
2016
, “
BPNN–QSTR Friction Model for Organic Compounds As Potential Lubricant Base Oils
,”
ASME J. Tribol.
,
138
(
3
), p.
031801
.
10.
Gao
,
X. L.
,
Dai
,
K.
,
Wang
,
Z.
,
Wang
,
T. T.
, and
He
,
J. B.
,
2016
, “
Establishing Quantitative Structure Tribo-Ability Relationship Model Using Bayesian Regularization Neural Network
,”
Friction
,
4
(
2
), pp.
105
115
.
11.
Gao
,
X. L.
,
Liu
,
D. H.
,
Wang
,
Z.
, and
Dai
,
K.
,
2016
, “
Quantitative Structure Tribo-Ability Relationship for Organic Compounds As Lubricant Base Oils Using CoMFA and CoMSIA
,”
ASME J. Tribol.
,
138
(
3
), p.
031802
.
12.
Gao
,
X. L.
,
Liu
,
D. H.
,
Song
,
Z.
, and
Dai
,
K.
,
2017
, “
Isosteric Design of Friction-Reduction and Anti-Wear Lubricant Additives With Less Sulfur Content
,”
Friction
,
6
(
02
), pp.
164
182
.
13.
Gao
,
X. L.
,
Wang
,
T. T.
, and
Cheng
,
Z.
,
2018
, “
Quantitative Structure Tribo-Ability Relationship of Ultra-High Molecular Weight Polyethylene Modified by Inorganic Compounds
,”
Ind. Lubr. Tribol.
,
70
(
1
), pp.
182
190
.
14.
Wang
,
Z.
,
Wang
,
T. T.
,
Yang
,
G. Y.
,
Gao
,
X. L.
, and
Dai
,
K.
,
2017
, “
Estimating Antiwear Properties of Esters As Potential Lubricant Based Oils Using QSTR Models With CoMFA and CoMSIA
,”
Friction
,
6
(
03
), pp.
289
296
.
15.
Gao
,
X. L.
,
Wang
,
Z.
,
Wang
,
T. T.
,
Song
,
Z.
,
Dai
,
K.
, and
Chen
,
H.
,
2018
, “
BPNN–QSTR Modeling to Develop Isosteres As Sulfur-Free, Anti-Wear Lubricant Additives
,”
ASME J. Tribol.
,
141
(
1
), p.
011801
.
16.
Song
,
Z.
,
Chen
,
T.
,
Wang
,
T. T.
,
Wang
,
Z.
, and
Gao
,
X. L.
,
2019
, “
Estimating Antiwear Properties of Ionic Liquids As Lubricant Additives Using a QSTR Model
,”
ASME J. Tribol.
,
141
(
9
), p.
091801
.
17.
Wang
,
T. T.
,
Wang
,
Z.
,
Chen
,
H.
,
Dai
,
K.
, and
Gao
,
X. L.
,
2020
, “
BPNN-QSTR Models for Triazine Derivatives for Lubricant Additives
,”
ASME J. Tribol.
,
142
(
1
), p.
011801
.
18.
Zuo
,
B.
,
Ma
,
X. X.
,
Wu
,
L.
,
Zhao
,
J.
,
Gao
,
X. L.
, and
Dai
,
K.
,
2019
, “
Synergy and Isosterism Design of a Phosphorus-Free Lubricating Additive
,”
J. Dispersion Sci. Technol.
,
41
(
7
), pp.
949
959
.
19.
Zhao
,
J.
,
Gao
,
X. L.
,
Chen
,
T.
,
Wang
,
T. T.
, and
Li
,
Y.
,
2020
, “
A Quantitative Structure Tribo-Ability Relationship Model for Predicting the Antiwear Properties of Ionic Liquids As Lubricant Additives in Dimethyl Sulfoxide
,”
ASME J. Tribol.
,
142
(
10
), p.
101901
.
20.
Gao
,
X. L.
,
Wang
,
Z.
,
Zhang
,
H.
, and
Dai
,
K.
,
2015
, “
A Three-Dimensional Quantitative Structure Tribo-Ability Relationship Model
,”
ASME J. Tribol.
,
137
(
2
), p.
021802
.
21.
Liu
,
D. H.
,
Yang
,
Q.
,
Wang
,
R. T.
,
Wang
,
Y.
,
Dai
,
K.
,
He
,
J. B.
, and
Gao
,
X. L.
,
2016
, “
Construction of CoMFA-QSTR and CoMSIA-QSTR Anti-Wear Performance Models of N-Containing Heterocyclic Lubricant Additives
,”
Tribology
,
36
(
4
), pp.
421
429
. DOI: 10.16078/j.tribology.2016.04.004
22.
Cramer
,
R. D.
,
Patterson
,
D. E.
, and
Bunce
,
J. D.
,
1989
, “
Recent Advances in Comparative Molecular Field Analysis (CoMFA)
,”
Prog. Clin. Biol. Res.
,
291
, pp.
161
165
. PMID: 2726839.
23.
Cramer
,
R. D.
,
Patterson
,
D. E.
, and
Bunce
,
J. D.
,
1988
, “
Comparative Molecular Field Analysis (CoMFA) 1. Effect of Shape on Binding of Steroids to Carrier Proteins
,”
J. Am. Chem. Soc.
,
110
(
18
), pp.
5959
5967
.
24.
Kubinyi
,
H.
,
Folkers
,
G.
, and
Martin
,
Y. C.
,
1998
,
3D QSAR in Drug Design, Recent Advances
,
Springer
,
The Netherlands
.
25.
Kubinyi
,
H.
,
2003
, “Comparative Molecular Field Analysis (CoMFA),”
Handbook of Chemoinformatics: From Data to Knowledge in 4 Volumes
,
J.
Gasteiger
, ed.,
Wiley-VCH Verlag GmbH
,
Weinheim, Germany
, pp.
1555
1574
.
26.
Klebe
,
G.
,
Abraham
,
U.
, and
Mietzner
,
T.
,
1994
, “
Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity
,”
J. Med. Chem.
,
37
(
24
), pp.
4130
4146
.
27.
Arvind
,
K.
,
Solomon
,
K. A.
, and
Rajan
,
S. S.
,
2014
, “
QSAR Studies on Diclofenac Analogues as Potent Cyclooxygenase Inhibitors Using CoMFA and CoMSIA
,”
Med. Chem. Res.
,
23
(
4
), pp.
1789
1796
.
28.
Nilanjan
,
A.
,
Amit
,
K. H.
,
Chanchal
,
M.
, and
Tarun
,
J.
,
2013
, “
Exploring Structural Requirements of Aurone Derivatives As Antimalarials by Validated DFT-Based QSAR, HQSAR, and COMFA-COMSIA Approach
,”
Med. Chem. Res.
,
22
(
12
), pp.
6029
6045
.
29.
Bohm
,
M.
,
Sturzebecher
,
J.
, and
Klebe
,
G.
,
1999
, “
Three-Dimensional Quantitative Structure–Activity Relationship Analyses Using Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis to Elucidate Selectivity Differences of Inhibitors Binding to Trypsin, Thrombin, and Factor Xa
,”
J. Med. Chem.
,
42
(
24
), pp.
458
477
.
You do not currently have access to this content.