A self-excited oscillation of transonic flow in a simplified cascade model was investigated experimentally, theoretically and numerically. The measurements of the shock wave and wake motions, and the unsteady static pressure field predict a closed-loop mechanism, in which the pressure disturbance that is generated by the oscillation of boundary layer separation propagates upstream in the main flow and forces the shock wave to oscillate, and then the shock oscillation disturbs the boundary layer separation again. A one-dimensional analysis confirms that the self-excited oscillation occurs in the proposed mechanism. Finally, a numerical simulation of the Navier–Stokes equations reveals the unsteady flow structure of the reversed flow region around the trailing edge, which induces the large flow separation to bring about the antiphase oscillation.

This content is only available via PDF.
You do not currently have access to this content.