Mass injection upstream of the tip of a high-speed axial compressor rotor is a stability enhancement approach known to be effective in suppressing stall in tip-critical rotors. This process is examined in a transonic axial compressor rotor through experiments and time-averaged Navier-Stokes CFD simulations. Measurements and simulations for discrete injection are presented for a range of injection rates and distributions of injectors around the annulus. The simulations indicate that tip injection increases stability by unloading the rotor tip and that increasing injection velocity improves the effectiveness of tip injection. For the tested rotor, experimental results demonstrate that at 70 percent speed the stalling flow coefficient can be reduced by 30 percent using an injected massflow equivalent to 1 percent of the annulus flow. At design speed, the stalling flow coefficient was reduced by 6 percent using an injected massflow equivalent to 2 percent of the annulus flow. The experiments show that stability enhancement is related to the mass-averaged axial velocity at the tip. For a given injected massflow, the mass-averaged axial velocity at the tip is increased by injecting flow over discrete portions of the circumference as opposed to full-annular injection. The implications of these results on the design of recirculating casing treatments and other methods to enhance stability will be discussed.

1.
Prince, D. C., Jr., Wisler, D. D., and Hivers, D. E., 1974, “Study of Casing Treatment Stall Margin Improvement,” NASA CR-134552.
2.
Takata
,
H.
, and
Tsukuda
,
Y.
,
1977
, “
Stall Margin Improvement by Casing Treatment—Its Mechanism and Effectiveness
,”
ASME J. Eng. Power
,
99
, pp.
121
133
.
3.
Crook
,
A. J.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Adamczyk
,
J. J.
,
1993
, “
Numerical Simulation of Compressor Endwall and Casing Treatment Flow Phenomena
,”
ASME J. Turbomach.
,
115
, pp.
501
512
.
4.
Paduano
,
J. D.
,
Epstein
,
A. H.
,
Valavani
,
L.
,
Longley
,
J. P.
,
Greitzer
,
E. M.
, and
Guenette
,
G. R.
,
1993
, “
Active Control of Rotating Stall in a Low Speed Axial Compressor Rotor
,”
ASME J. Turbomach.
,
115
, pp.
48
56
.
5.
van Schalkwyk
,
C. M.
,
Paduano
,
J. D.
,
Greitzer
,
E. M.
, and
Epstein
,
A. H.
,
1998
, “
Active Stabilization of Axial Compressors With Circumferential Inlet Distortion
,”
ASME J. Turbomach.
,
120
, pp.
431
439
.
6.
Eveker
,
K. M.
,
Gysling
,
D. L.
,
Nett
,
C. N.
, and
Sharma
,
O. P.
,
1998
, “
Integrated Control of Rotating Stall and Surge in High-Speed Multistage Compression Systems
,”
ASME J. Turbomach.
,
120
, pp.
440
445
.
7.
Behnken, R. L., Leung, M., and Murray, R. M., 1997, “Characterizing the Effects of Air Injection on Compressor Performance for Use in Active Control of Rotating Stall,” ASME Paper No. 97-GT-316.
8.
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Frechette
,
L. G.
,
Epstein
,
A. H.
,
Greitzer
,
E. M.
,
Bright
,
M. M.
, and
Strazisar
,
A. J.
,
1998
, “
Active Stabilization of Rotating Stall and Surge in a Transonic Single Stage Axial Compressor
,”
ASME J. Turbomach.
,
120
, pp.
625
636
.
9.
Spakovszky
,
Z. S.
,
Weigl
,
H. J.
,
Paduano
,
J. D.
,
van Schalkwyk
,
C. M.
,
Suder
,
K. L.
,
Bright
,
M. M.
,
1999
, “
Rotating Stall Control in a High-Speed Stage With Inlet Distortion: Part I—Radial Distortion
,”
ASME J. Turbomach.
,
121
, pp.
510
516
.
10.
Spakovszky
,
Z. S.
,
van Schalkwyk
,
C. M.
,
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Suder
,
K. L.
, and
Bright
,
M. M.
,
1999
, “
Rotating Stall Control in a High-Speed Stage with Inlet Distortion: Part II—Circumferential Distortion
,”
ASME J. Turbomach.
,
121
,
517
524
.
11.
Freeman
,
C.
,
Wilson
,
A. G.
,
Day
,
I. J.
, and
Swinbanks
,
M. A.
,
1998
, “
Experiments in Active Control of Stall on an Aeroengine Gas Turbine
,”
ASME J. Turbomach.
,
120
, No.
4
, pp.
637
647
.
12.
Camp
,
T. R.
, and
Day
,
I. J.
,
1998
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
, pp.
393
401
.
13.
Koch, C. C., and Smith, L. H., Jr., 1968, “Experimental Evaluation of Outer Casing Blowing or Bleeding of Single Stage Axial Flow Compressor, Part IV–Performance of Bleed Insert Configuration No. 3,” NASA CR-54590.
14.
Lee
,
N. K. W.
, and
Greitzer
,
E. M.
,
1990
, “
Effects of Endwall Suction and Blowing on Compressor Stability Enhancement
,”
ASME J. Turbomach.
,
112
, pp.
133
144
.
15.
Reid, L., and Moore, R. D., 1978, “Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 1.82,” NASA TP 1338.
16.
Berndt
,
R. G.
,
Weigl
,
H. J.
,
Paduano
,
J. D.
, and
Epstein
,
A. H.
,
1995
, “
Experimental Techniques for Actuation, Sensing, and Measurement of Rotating Stall Dynamics in High Speed Engines
,”
J. Soc. Photo-Opt. Instrum. Eng.
,
2494
, pp.
124
136
.
17.
Adamczyk, J. J., 1985, “Model Equation for Simulating Flows in Multistage Turbomachinery,” ASME Paper No. 85-GT-226.
18.
Turner, M. G., and Saedi, S., 1997, “Average Passage Code Development and Validation,” Contract No. NASA-26617, Task No. 57.
19.
Hathaway, M. D., and Strazisar, A. J., 1998, “Impact of Discrete Tip Injection on Stabilization of a Transonic Compressor Rotor,” Proc. 21st Army Science Conference, June 13–15, Norfolk, VA.
20.
Koch
,
C. C.
, and
Smith
,
L. H.
, Jr.
,
1976
, “
Loss Sources and Magnitudes in Axial Flow Compressors
,”
ASME J. Eng. Power
,
98
, pp.
411
424
.
21.
Koch
,
C. C.
,
1981
, “
Stalling Pressure Rise Capability of Axial Flow Compressor Stages
,”
ASME J. Eng. Power
,
103
, pp.
645
656
.
22.
Adamczyk
,
J. J.
,
Celestina
,
M. L.
, and
Greitzer
,
E. M.
,
1993
, “
The Role of Tip Clearance in High Speed Fan Stall
,”
ASME J. Turbomach.
,
115
, No.
1
, pp.
28
39
.
23.
Suder
,
K. L.
,
1998
, “
Blockage Development in a Transonic, Axial Compressor Rotor
,”
ASME J. Turbomach.
,
120
, pp.
465
476
.
24.
Suder
,
K. L.
, and
Celestina
,
M. L.
,
1996
, “
Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
118
, pp.
218
229
.
25.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
155
, pp.
1
9
.
26.
Graf
,
M. B.
,
Wong
,
T. S.
,
Greitzer
,
E. M.
,
Marble
,
F. E.
,
Tan
,
C. S.
,
Shin
,
H. W.
, and
Wisler
,
D. C.
,
1997
, “
Effects of Non-Axisymmetric Tip Clearance on Axial Compressor Performance and Stability
,”
ASME J. Turbomach.
,
120
, pp.
648
661
.
27.
Cumpsty, N. A., 1989, “Part-Circumference Casing Treatment and the Effect on Compressor Stall,” ASME Paper No. 89-GT-312.
28.
Manwaring
,
S. R.
,
Rabe
,
D. C.
,
Lorence
,
C. B.
, and
Wadia
,
A. R.
,
1997
, “
Inlet Distortion Generated Forced Response of a Low-Aspect-Ratio Transonic Fan
,”
ASME J. Turbomach.
,
119
, pp.
665
676
.
29.
Kang, C. S., McKenzie, A. B., and Elder, R. L., 1995, “Recessed Casing Treatment Effects on Fan Performance and Flow Field,” ASME Paper No. 95-GT-197.
30.
Koff, S. G., Nikkanen, J. P., and Mazzawy, R. S., 1994, “Rotor Casing Treatment,” U.S. Patent Application, U.S. Serial Number 005308225A.
31.
Koch, C. C., and Smith, L. H., Jr., 1968, “Experimental Evaluation of Outer Casing Blowing or Bleeding of Single Stage Axial Flow Compressor, Part IV—Performance of Blowing Insert Configuration No. 1,” NASA CR-54589.
You do not currently have access to this content.