Based on the results of time-dependent 3-D viscous computations the aerodynamic mechanisms that cause the unsteady pressure fluctuations on the vane and rotor blade surface of a high-pressure transonic turbine are identified and separately classified in a phenomenological manner. In order to be able to describe separately the influence of wake, potential and shock distortions on the blade surface pressure at design operation conditions, the stator exit Mach number is increased as to enhance the shock distortions and lowered as to enhance potential and wake distortions. In a comprehensive approach the observations from the off-design conditions are utilized to classify every major perturbation observed in the perturbation space-time maps at design operation conditions. The spanwise variations caused by the inherent 3-D nature of the flow field and promoted by the 3-D shape of the rotor blade are addressed.

1.
Manwaring
,
S. R.
,
Rabe
,
D. C.
,
Lorence
,
C. B.
, and
Wadia
,
A. R.
,
1997
, “
Inlet Distortion Generated Forced Response of a Low-Aspect-Ratio Transonic Fan
,”
ASME J. Turbomach.
,
115
, pp.
724
740
.
2.
Meyer
,
R. X.
, 1958, “The Effects of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines,” ASME J. Basic Eng., Oct., pp. 1544–1552.
3.
Lefcort
,
M. D.
, 1965, “An Investigation Into Unsteady Blade Forces in Turbomachines,” ASME J. Eng. Power, Oct., pp. 345–354.
4.
Hodson
,
H. P.
,
1985
, “
Measurements of Wake-Generated Unsteadiness in the Rotor Passages of Axial Flow Turbines
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
467
476
.
5.
Hodson
,
H. P.
,
1985
, “
An Inviscid Blade-to-Blade Prediction of a Wake-Generated Unsteady Flow
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
337
344
.
6.
Doorly
,
D. J.
, and
Oldfield
,
M. L. G.
,
1985
, “
Simulation of the Effects of Shock Wave Passing on a Turbine Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
,
107
,
Oct.
, pp.
998
1006
.
7.
Ashworth
,
D. A.
,
LaGraff
,
J. E.
,
Schultz
,
D. L.
, and
Grindrod
,
K. J.
,
1985
, “
Unsteady Aerodynamic and Heat Transfer Processes in a Transonic Turbine Stage
,”
ASME J. Eng. Gas Turbines Power
,
107
,
Oct.
, pp.
1022
1030
.
8.
Johnson, A. B., Rigby, M. J., and Oldfield, M. L. G., 1989, “Unsteady Aerodynamic Phenomena in a Simulated Wake and Shock Wave Passing Experiment,” AGARD-CP-468.
9.
Giles
,
M. B.
,
1988
, “
Calculation of Unsteady Wake Rotor Interaction
,”
J. Propul. Power
,
4
, pp.
356
362
.
10.
Saxer
,
A. P.
, and
Giles
,
M. B.
,
1994
, “
Predictions of Three-Dimensional Steady and Unsteady Inviscid Transonic Stator/Rotor Interaction With Inlet Radial Temperature Nonuniformity
,”
ASME J. Turbomach.
,
116
, pp.
347
357
.
11.
Lakshminarayana
,
B.
,
Chernobrovkin
,
A.
, and
Ristic
,
D.
,
2000
, “
Unsteady Viscous Flow Causing Rotor-Stator Interaction in Turbines. Part I: Data, Code, and Pressure Field
,”
J. Propul. Power
,
16
, No.
5
, pp.
744
750
.
12.
Chernobrovkin
,
A.
, and
Lakshminarayana
,
B.
,
2000
, “
Unsteady Viscous Flow Causing Rotor Stator Interaction in Turbines. Part 2: Simulation, Integrated Flow Field and Interpretation
,”
J. Propul. Power
,
16
, No.
5
, pp.
751
759
.
13.
Dunn
,
M. G.
,
Bennet
,
W.
,
Delaney
,
R.
, and
Rao
,
K.
,
1992
, “
Investigation of Unsteady Flow Through Transonic Turbine Stage: Data/Prediction Comparison for Time-Averaged and Phase-Resolved Pressure Data
,”
ASME J. Turbomach.
,
114
, pp.
91
99
.
14.
Rao
,
K. V.
,
Delaney
,
R. A.
, and
Dunn
,
M. G.
,
1994
, “
Vane-Blade Interaction in a Transonic Turbine: Part I—Aerodynamics
,”
J. Propul. Power
,
10
, No. 3,
May–June
, pp.
305
311
.
15.
Venable
,
B. L.
,
Delaney
,
R. A.
,
Busby
,
J. A.
,
Davis
,
R. L.
,
Dorney
,
D. J.
,
Dunn
,
M. G.
,
Haldemann
,
C. W.
, and
Abhari
,
R. S.
,
1999
, “
Influence of Vane-Blade Spacing on Transonic Turbine Stage Aerodynamics: Part I—Time-Averaged Data and Analysis
,”
ASME J. Turbomach.
,
121
,
Oct.
, pp.
663
672
.
16.
Busby
,
J. A.
,
Davis
,
R. L.
,
Dorney
,
D. J.
,
Dunn
,
M. G.
,
Haldemann
,
C. W.
,
Abhari
,
R. S.
,
Venable
,
B. L.
, and
Delaney
,
R. A.
,
1999
, “
Influence of Vane-Blade Spacing on Transonic Turbine Stage Aerodynamics: Part II—Time-Resolved Data and Analysis
,”
ASME J. Turbomach.
,
121
,
Oct.
, pp.
673
685
.
17.
Hilditch, M. A., Smith, G. S., and Singh, U. K., 1998, “Unsteady Flow in a Single Stage Turbine,” ASME Paper No. 98-GT-531.
18.
Moss, R. W., Ainsworth, R. W., Sheldrake, C. D., and Miller, R., 1997, “The Unsteady Pressure Field Over a Turbine Blade Surface: Visualization and Interpretation of Experimental Data,” ASME Paper No. 97-GT-474.
19.
Laumert, B., Ma˚rtensson, H., and Fransson, T. H., 2000, “Investigation of the Flowfield in the Transonic VKI BRITE EURAM Turbine Stage with 3D Steady and Unsteady N-S Computations,” ASME Paper No. 2000-GT-0433.
20.
Denos
,
R.
,
Sieverding
,
C. H.
,
Arts
,
T.
,
Brouckaert
,
J. F.
,
Paniagua
,
G.
, and
Michelassi
,
V.
,
1999
, “
Experimental Investigation of the Unsteady Rotor Aerodynamics of a Transonic Turbine Stage
,”
IMECH Conf. Trans.
, 3. European Conference on Turbomachinery,
pp.
271
287
.
21.
Denos, R., Arts, T., Paniagua, G., Michelassi, V., and Martelli, F., 2000, “Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage,” ASME Paper No. 2000-GT-0435
22.
Eriksson, L.-E., 1990, “A Third Order Accurate Upwind-Biased Finite Volume Scheme for Unsteady Compressible Flow,” VFA Report 9370-154, Volvo Aero Corporation, Trollha¨ttan, Sweden.
23.
Dahlander, P., Abrahamsson, H., Ma˚rtensson, H., and Ha˚ll, U., 1998, “Numerical Simulation of a Film Cooled Nozzle Guide Vane Using an Injection Model,” ASME Paper No. 98-GT-439.
You do not currently have access to this content.