Detailed heat transfer distributions on the endwall and along the vane/blade surface are essential for component mechanical integrity and life predictions. Due to secondary flows, high gradients in heat transfer are present at the endwall and at the vane or blade surface itself where the passage vortex influences the mainstream flow. This paper documents the benchmarking of three turbulence models: 1) k-ε realizable with wall functions, 2) k-ε realizable with two layer model, and 3) the V2F model for endwall and surface heat transfer and flowfield predictions. Benchmark experimental data from a scaled-up low speed rig for both a stator and rotor geometry are used for comparisons of heat transfer and flowfield. While the k-ε realizable turbulence models give a good prediction of the secondary flow pattern, the heat transfer at the endwall and at the surface is not well predicted due to the inadequate modeling of near wall turbulence. The V2F model gives better agreement with the experiments on the endwall and vane midspan heat transfer is also well predicted, although transition occurs too far upstream on the suction surface. The results from this study represent the feasibility of CFD utilization as a predictive tool for local heat transfer distributions on a vane/blade endwall.

1.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Turbomach.
,
109
, pp.
186
193
.
2.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
, pp.
229
236
.
3.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
, pp.
862
869
.
4.
Kang
,
M.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
ASME J. Turbomach.
,
122
, pp.
458
466
.
5.
Kang
,
M.
,
Kohli
,
A.
, and
Thole
,
K. A.
,
1999
, “
Heat Tranfser and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
,
121
(
3
), pp.
558
568
.
6.
Radomsky
,
R.
, and
Thole
,
K. A.
,
2000
, “
Highly Turbulent Flowfield Measurements Around a Stator Vane
,”
ASME J. Turbomach.
,
122
, pp.
255
262
.
7.
Cho
,
H. H.
,
Rhee
,
D. H.
, and
Choi
,
J. H.
,
2001
, “
Heat/Mass Transfer Characteristics on Turbine Shroud With Blade Tip Clearance
,”
Heat Transfer Gas Turbine Systems
Annals of the N.Y. Academy of Sciences,,
934
, pp.
281
288
.
8.
Hermanson
,
K.
, and
Thole
,
K.
,
1999
, “
Effect of Inlet Conditions on Endwall Secondary Flows
,”
AIAA Power Turbomachinery
,
16
(
2
), pp.
286
296
.
9.
Giel, P. W., Van Fossen, G. J., Boyle, R. J., Thurman, D. R., and Civinskas, K. C., 1999, “Blade Heat Transfer Measurements and Predictions in a Transonic Turbine Cascade,” ASME Paper 99-GT-125 (NASA TM-209296).
10.
Chima
,
R. V.
,
Giel
,
P. W.
, and
Boyle
,
R. J.
, 1993, “An Algebraic Turbulence Model for Three-Dimensional Viscous Flows,” AIAA Pap., Paper No. 93-0083 (NASA TM-105931).
11.
Boyle
,
R. J.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Heat Transfer in Gas Turbine Systems
, Annals of the N.Y. Academy of Sciences,
932
, pp.
11
26
.
12.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
248
257
.
13.
Khawaja
,
A.
,
Kallinderis
,
Y.
,
Irmisch
,
S.
,
Lloyd
,
J.
,
Walker
,
D.
, and
Benz
,
E.
, 1999, “Adaptive Hybrid Grid Generation for Turbomachinery and Aerospace Applications,” AIAA Paper, , Paper No. 99-0916.
14.
FLUENT User’s Guide, Version 5.1. 1999. I–IV, Fluent Inc.
15.
Cascade Inc. 1999. www.turbulentflow.com.
16.
Launder
,
B. E.
, and
Spaulding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.
17.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Flows-Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
18.
Durbin
,
P. A.
,
1991
, “
Near-Wall Turbulence Closure Modeling Without Damping Functions
,”
Theor. Comput. Fluid Dyn.
,
3
, pp.
1
13
.
19.
Durbin
,
P. A.
,
1993
, “
Application of a Near-Wall Turbulence Model to Boundary Layers and Heat Transfer
,”
Int. J. Heat Fluid Flow
,
14
, pp.
316
323
.
20.
Parneix
,
S.
,
Durbin
,
P. A.
, and
Behnia
,
M.
,
1998
, “
Computation of 3-D Turbulent Boundary Layers Using the V2F Model
,”
Flow, Turbul. Combust.
,
60
, pp.
19
46
.
21.
Durbin, Kalitzin, and Iaccarino, 2001, http://www-fpc.stanford.edu/Durbin/Turbine.html.
22.
Hermanson
,
K.
,
Parneix
,
S.
,
Von Wolfersdorf
,
J.
, and
Semmler
,
K.
,
2001
, “
Prediction of Pressure Loss and Heat Transfer in Internal Blade Cooling Passages
,”
Heat Transfer in Gas Turbine Systems
,Annals of the N.Y. Academy of Sciences,
932
, pp.
448
455
.
23.
Crawford, M. E., 1986, “Simulation Codes for Calculation of Heat Transfer to Convectively-Cooled Turbine Blades,” set of 4 lectures in Convective Heat Transfer and Film Cooling in Turbomachinery, ed., T. Arts, Lecture Series 1986-06, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium.
24.
Kang, M., 1998, “Detailed Measurements in the Endwall Region of a Gas Turbine Stator Vane,” Master of Science thesis, University of Wisconsin-Madison.
25.
Hermanson, K., 1999, “Effect of Inlet Conditions on Endwall Secondary Flows,” Master of Science thesis, University of Wisconsin-Madison.
26.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
,
102
, pp.
257
267
.
27.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
Impact of Film-Cooing Jets on Turbine Aerodyamic Losses
,”
ASME J. Turbomach.
,
122
, pp.
537
545
.
You do not currently have access to this content.