A set of experimental data is presented investigating the unsteady aerodynamics associated with a high pressure turbine vane (HPV) and rotor blade (HPB). The data was acquired at the Turbine Research Facility (TRF) of the Air Force Research Laboratory. The TRF is a transient, blowdown facility generating several seconds of experimental data on full scale engine hardware at scaled turbine operating conditions simulating an actual engine environment. The pressure ratio and freestream Reynolds number were varied for this investigation. Surface unsteady pressure measurements on the HPV, total pressure traverse measurements downstream of the vane, and surface unsteady pressure measurements for the rotor blade were obtained. The unsteady content of the HPV surface was generated by the rotor potential field. The first harmonic decayed more rapidly than the second harmonic with a movement upstream causing the second harmonic to be most influential at the vane throat. The blade unsteadiness appears to be caused by a combination of shock, potential field, and vane wake interactions between the vane and rotor blade. The revolution averaged data resulted in higher unsteadiness than a passing ensemble average for both vane and rotor indicating a need to understand each passage for high cycle fatigue (HCF) effects.

1.
Fleeter
,
S.
,
Jay
,
R. L.
, and
Bennett
,
W. A.
, 1978, “
Rotor Wake Generated Unsteady Aerodynamic Response of a Compressor Stator
,”
ASME J. Eng. Power
0022-0825,
100
, pp.
664
675
.
2.
Johnston
,
R. T.
,
Feiereisen
,
J. M.
, and
Fleeter
,
S.
, 1998, “
Measured Rotor Wake and Potential Forcing Functions, Including Blade Row Interactions
,”
J. Propul. Power
0748-4658,
14
(
2
), pp.
191
198
.
3.
Johnston
,
D. A.
, and
Fleeter
,
S.
, 1998, “
Three-Dimensional Turbine Rotor Forcing Functions and Linear Theory Analysis
,”
J. Propul. Power
0748-4658,
14
(
2
), pp.
183
190
.
4.
Kielb
,
J. J.
,
Dunn
,
M. G.
, and
Abhari
,
R. S.
, 2001, “
Experimental and Numerical Study of Forced Response in a Full-Scale Rotating Turbine
,” ASME Paper No. 2001-GT-0263.
5.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2003, “
Wake, Shock, and Potential Field Interactions in a 1.5 Stage Turbine–Part I: Vane–Rotor and Rotor–Vane Interaction
,”
J. Turbomach.
0889-504X,
125
, pp.
33
39
.
6.
Clark
,
J. P.
,
Aggarwala
,
A. S.
,
Velonis
,
M. A.
,
Gacek
,
R. E.
,
Magge
,
S. S.
, and
Price
,
F. R.
, 2002, “
Using CFD to Reduce Resonant Stresses on a Single-stage High-pressure Turbine Blade
,” ASME Paper No. GT-2002-30320.
7.
Clark
,
J. P.
,
Stetson
,
G. M.
,
Magge
,
S. S.
,
Ni
,
R. H.
,
Haldeman
,
C. W.
, Jr.
, and
Dunn
,
M. G.
, 2000, “
The Effect of Airfoil Scaling on the Predicted Unsteady Loading on the Blade of a 1 and Stage Transonic Turbine and a Comparison with Experimental Results
,” ASME Paper No. 2000-GT-0446.
8.
Sharma
,
O. P.
,
Pickett
,
G. F.
, and
Ni
,
R. H.
, 1992, “
Assessment of Unsteady Flows in Turbines
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
79
90
.
9.
Manwaring
,
S. R.
, and
Wisler
,
D. C.
, 1993, “
Unsteady Aerodynamics and Gust Response in Compressors and Turbines
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
724
740
.
10.
Venable
,
B. L.
,
Delaney
,
R. A.
,
Busby
,
J. A.
,
Davis
,
R. L.
,
Dorney
,
D. J.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
, and
Abhari
,
R. S.
, 1999, “
Influence of Vane-Blade Spacing on Transonic Turbine Stage Aerodynamics: Part I—Time-Averaged Data and Analysis
,”
J. Turbomach.
0889-504X,
121
, pp.
663
682
.
11.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
MacArthur
,
C. D.
, and
Murawski
,
C. G.
, 1992, “
The USAF Advance Turbine Aerothermal Research Rig
,”
NATO AGARD Propulsion and Energetics Panel Conference Proceedings
, No.
527
, Antalya, Turkey, 1992.
12.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
13.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
,
C. D.
, 2002, “
Turbine Tip and Shroud Heat Transfer and Loading Part A: Parameter Effects Including Reynolds Number, Pressure Ratio, and Gas to Metal Temperature Ratio
,” ASME Paper No. GT-2002-30186.
You do not currently have access to this content.