The effects of surface roughness and freestream turbulence level on the aerodynamic performance of a turbine vane are experimentally investigated. Wake profiles are measured with three different freestream turbulence intensity levels (1.1%, 5.4%, and 7.7%) at two different locations downstream of the test vane trailing edge (1 and 0.25 axial chord lengths). Chord Reynolds number based on exit flow conditions is 0.9×106. The Mach number distribution and the test vane configuration both match arrangements employed in an industrial application. Four combered vanes with different surface roughness levels are employed in this study. Effects of surface roughness on the vane pressure side on the profile losses are relatively small compared to suction side roughness. Overall effects of turbulence on local wake deficits of total pressure, Mach number, and kinetic energy are almost negligible in most parts of the wake produced by the smooth test vane, except that higher freestream losses are present at higher turbulence intensity levels. Profiles produced by test vanes with rough surfaces show apparent lower peak values in the center of the wake. Integrated aerodynamic losses and area-averaged loss coefficient YA are also presented and compared to results from other research groups.

1.
Nikuradse
,
J.
, 1933, “
Laws of Flow in Rough Pipes
,” NACA TM 1292, National Advisory Committee on Aeronautics.
2.
Schlichting
,
H.
, 1936, “
Experimental Investigation of the Problem of Surface Roughness
,” NACA TM-832, National Advisory Committee on Aeronautics.
3.
Coleman
,
H. W.
,
Hodge
,
B. K.
, and
Taylor
,
R. P.
, 1984, “
A Re-evaluation of Schlichting’s Surface Roughness Experiment
,”
ASME J. Fluids Eng.
0098-2202,
106
, pp.
60
65
.
4.
Sigal
,
A.
, and
Danberg
,
J. E.
, 1990, “
New Correlation of Roughness Density Effect on Turbulent Boundary Layer
,”
AIAA J.
0001-1452,
28
(
3
), pp.
554
556
.
5.
Sigal
,
A.
, and
Danberg
,
J. E.
, 1988, “
Analysis of Turbulent Boundary Layer Over Roughness Surface With Application to Projectile Aerodynamics
,” Army Ballistic Research Lab, Aberdeen Proving Grounds MD, Technical Report No. BRL-TR-2977.
6.
Van Rij
,
J. A.
,
Belnap
,
B. J.
, and
Ligrani
,
P. M.
, 2002, “
Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
1
7
.
7.
Zhang
,
Q.
,
Lee
,
S. W.
, and
Ligrani
,
P. M.
, 2003, “
Determination of Rough-Surface Skin Friction Coefficients From Wake Profile Measurements
,”
Exp. Fluids
0723-4864,
35
, pp.
627
635
.
8.
Bammert
,
K.
, and
Sandstede
,
H.
, 1975, “
Influence of Manufacturing Tolerances and Surface Roughness of Blades on the Performance of Turbines
,” ASME Paper No. 75-GT-35.
9.
Bammert
,
K.
, and
Sandstede
,
H.
, 1980, “
Measurements of the Boundary Layer Development Along a Turbine Blade With Rough Surfaces
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
978
983
.
10.
Kind
,
R. J.
,
Serjak
,
P. J.
, and
Abbott
,
M. W. P.
, 1996, “
Measurements and Prediction of The Effects of Surface Roughness on Profile Losses and Deviation in a Turbine Cascade
,” ASME Paper No. 95-GT-203.
11.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
, 1998, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
337
342
.
12.
Abuaf
,
N.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
, 1998, “
Effects of Surface Roughness on Heat Transfer and Aerodynamics Performance of Turbine Airfoils
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
522
529
.
13.
Leipold
,
R.
,
Boese
,
M.
, and
Fottner
,
L.
, 2000, “
The influence of Technical Surface Roughness Caused by Precision Forging on the Flow Around a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
416
425
.
14.
Zhang
,
Q.
,
Lee
,
S. W.
, and
Ligrani
,
P. M.
, 2004, “
Effects of Surface Roughness and Turbulence Intensity on the Aerodynamic Losses Produced by the Suction Surface of a Simulated Turbine Airfoil
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
257
265
.
15.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2004, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,” ASME Paper No. GT2004-53114.
16.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2004, “
Boundary-Layer Transition over Rough Surfaces With Elevated Freestream Turbulence
,” ASME Paper No. GT2004-53668.
17.
Boyle
,
R. J.
, and
Senyitko
,
R. G.
, 2003, “
Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics
,” ASME Paper No. GT-2003-38580.
18.
Yun
,
Y. I.
,
Park
,
I. Y.
, and
Song
,
S. J.
, 2004, “
Performance Degradation Due to Blade Surface Roughness in a Single-Stage Axial Turbine
,” ASME Paper No. GT2004-53094.
19.
Zhang
,
Q.
,
Lee
,
S. W.
, and
Ligrani
,
P. M.
, 2004, “
Effect of Surface Roughness and Freestream Turbulence on the Wake Turbulence Structure of a Symmetric Airfoil
,”
Phys. Fluids
1070-6631,
16
, pp.
2044
2053
.
20.
Geogory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
, 1992, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
173
183
.
21.
Boyle
,
R. J.
,
Luci
,
B. L.
,
Verhoff
,
V. G.
,
Camperchioli
,
W. P.
, and
La
,
H.
, 1998, “
Aerodynamics of a Transitioning Turbine Stator Over a Range of Reynolds Numbers
,” ASME Paper No. 98-GT-285.
22.
Ames
,
F. E.
, and
Plesniak
,
M. W.
, 1997, “
The Influence of Large-Scale, High Intensity Turbulence on Vane Aerodynamics Losses, Wake Growth, and the Exit Turbulence Parameters
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
182
192
.
23.
Jouini
,
D. B. M.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
, 2001, “
Aerodynamic Performance of a Transonic Turbine Cascade at Off-Design Conditions
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
510
518
.
24.
Radomsky
,
R. W.
, and
Thole
,
K. A.
, 2002, “
Detailed Boundary Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
107
118
.
25.
Boyle
,
R. J.
,
Lucci
,
B. L.
, and
Senyitko
,
R. G.
, 2002, “
Aerodynamics Performance and Turbulence Measurements in a Turbine Vane Cascade
,” ASME Paper No. GT-2002-30434.
26.
Zhang
,
Q.
, and
Ligrani
,
P. M.
, 2004, “
Effects of Mach Number and Surface Roughness on the Aerodynamic Losses of a Symmetric Transonic Turbine Airfoil
,”
J. Propul. Power
0748-4658,
20
, pp.
1117
1125
.
27.
Jackson
,
D. J.
,
Lee
,
K. L.
,
Ligrani
,
P. M.
, and
Johnson
,
P. D.
, 2000, “
Transonic Aerodynamics Losses Due to Turbine Airfoil, Suction Surface Film Cooling
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
317
326
.
28.
Furukawa
,
T.
, and
Ligrani
,
P. M.
, 2002, “
Transonic Film Cooling Effectiveness From Shaped Holes on a Simulated Turbine Airfoil
,”
J. Thermophys. Heat Transfer
0887-8722,
16
, pp.
228
237
.
29.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
30.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
31.
Jackson
,
D. J.
, “
Aerodynamic Mixing Losses and Discharge Coefficients Due to Film Cooling From a Symmetric Turbine Airfoil in Transonic Flow
,” M.S. thesis, Department of Mechanical Engineering, University of Utah.
32.
Sitaram
,
N.
,
Govardhan
,
M.
, and
Murali Krishna
,
V. T.
, 1999, “
Loss Reduction by Means of Two-Dimensional Roughness Elements on the Suction Surface of a Linear Turbine Rotor Cascade
,”
Flow, Turbul. Combust.
1386-6184,
62
, pp.
227
248
.
You do not currently have access to this content.