The Oak Ridge National Laboratory (ORNL) has been involved in research and development related to improved performance of recuperators for industrial gas turbines since about 1996, and in improving recuperators for advanced microturbines since 2000. Recuperators are compact, high efficiency heat-exchangers that improve the efficiency of smaller gas turbines and microturbines. Recuperators were traditionally made from 347 stainless steel and operated below or close to 650°C, but today are being designed for reliable operation above 700°C. The Department of Energy (DOE) sponsored programs at ORNL have helped defined the failure mechanisms in stainless steel foils, including creep due to fine grain size, accelerated oxidation due to moisture in the hot exhaust gas, and loss of ductility due to aging. ORNL has also been involved in selecting and characterizing commercial heat-resistant stainless alloys, like HR120 or the new AL20-25+Nb, that should offer dramatically improved recuperator capability and performance at a reasonable cost. This paper summarizes research on sheets and foils of such alloys over the last few years, and suggests the next likely stages for manufacturing recuperators with upgraded performance for the next generation of larger 200-250kW advanced microturbines.

1.
Monitor
,
D. G.
, 2003, Resource Dynamics Corp., Vienna, VA, Vol.
III
(
5
), September/October.
2.
Microturbines are Generating Interest
,”
Materials and Components in Fossil Energy Applications
, Newsletter No. 143 (Dec. 1, 1999), U.S. DOE and EPRI, published by Oak Ridge National Laboratory, Oak Ridge, TN.
3.
Ward
,
M. E.
, 1995, “
Primary Surface Recuperator Durability and Applications
,” Report No. TTS006/395, Solar Turbines, Inc., San Diego, CA.
4.
McDonald
,
C. F.
, 1996, “
Heat Recovery Exchanger Technology for Very Small Gas Turbines
,”
Int. J. Turbo Jet Engines
0334-0082,
13
, pp.
239
261
.
5.
McDonald
,
C. F.
, 2003, “
Recuperator Considerations for Future Higher Efficiency Microturbines
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
1463
1487
.
6.
Rakowski
,
J. M.
,
Stinner
,
C. P.
,
Lipschutz
,
M.
, and
Montague
,
J. P.
, 2004, “
The Use and Performance of Oxidation and Creep-Resistant Stainless Steels in an Exhaust Gas Primary Surface Recuperator Application
,” ASME Paper No. GT2004-53917.
7.
Stambler
,
I.
, 2004, “
Mercury 50 Rated at 4600kW and 38.5% Efficiency With 5 ppm NOx
,” Gas Turbine World (Feb.-Mar.), pp.
12
16
.
8.
Treece
,
B.
,
Vessa
,
P.
, and
McKeirnan
,
R.
, 2002, “
Microturbine Recuperator Manufacturing and Operating Experience
,” ASME Paper No. GT-2002-30404.
9.
Kesseli
,
J.
,
Wolf
,
T.
,
Nash
,
J.
, and
Freedman
,
S.
, 2003, “
Micro, Industrial, and Advanced Gas Turbines Employing Recuperators
,” ASME Paper No. GT2003-38938.
10.
Branch
,
D.
, 2003, “
The WR-21 – From Concept to Reality
,”
Parsons 2003: Engineering Issues in Turbine Machinery, Power Plants and Renewables
,
The Institute of Materials, Minerals and Mining, Maney Publishing
, London, UK, pp.
1039
1055
.
11.
Oswald
,
J. I.
,
Dawson
,
D. A.
, and
Clawley
,
L. A.
, 1999, “
A New Durable Gas Turbine Recuperator
,” ASME Paper No. 99-GT-369.
12.
Antoine
,
H.
, and
Prieels
,
L.
, 2002, “
The ACTE Spiral Recuperator for Gas Turbine Engines
,” ASME Paper No. GT2002-30405.
13.
Hamilton
,
S. L.
, 2003,
The Handbook of Microturbine Generators
,
PennWell Corp.
, Tulsa, OK.
14.
Agular
,
V. D.
, and
Hamilton
,
S. L.
, 2004, “
The Best Applications for Microturbines
,”
Cogeneration and On-Site Power Production
,
5
(
4
), pp.
101
106
.
15.
Advanced Microturbine Systems – Program Plan for Fiscal Years 2000 – 2006
, Office of Power Technologies, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, Washington, DC, March.
16.
Maziasz
,
P. J.
, and
Swindeman
,
R. W.
, 2003, “
Selecting and Developing Advanced Alloys for Creep-Resistance for Microturbine Recuperator Applications
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
310
315
.
17.
Pint
,
B. A.
, and
Rakowski
,
J. M.
, 2000, “
Effects of Water Vapor on the Oxidation Resistance of Stainless Steels
,” Paper 00259 from Corrosion 2000, NACE-International, Houston, TX.
18.
Pint
,
B. A.
,
More
,
K. L.
, and
Tortorelli
,
P. F.
, 2002, “
The Effect of Water Vapor on Oxidation Performance of Alloys Used in Recuperators
,” ASME Paper No. GT-2002-30543.
19.
Pint
,
B. A.
, and
Peraldi
,
R.
, 2003, “
Factors Affecting Corrosion Resistance of Recuperator Alloys
,” ASME Paper No. GT2003-38692.
20.
Maziasz
,
P. J.
, 1986, “
Microstructural Stability and Control for Improved Irradiation Resistance and for High-Temperature Strength of Austenitic Stainless Steels
,”
MiCon 86: Optimization of Processing, Properties and Service Performance Through Microstructural Control
, ASTM-STP-979,
ASTM
, Philadelphia, PA, pp.
116
161
.
21.
Maziasz
,
P. J.
, and
Swindeman
,
R. W.
, 1987, “
Modified 14Cr-16Ni Stainless Steels With Improved Creep Resistance at 700°C Due to Tailored Precipitate Microstructure
,”
Advances in Materials Technology for Fossil Power Plants
,
ASM-International
, Materials Park, OH, pp.
283
290
.
22.
Maziasz
,
P. J.
, et al.
, 1999, “
Improved Creep-Resistance of Austenitic Stainless Steel for Compact Gas Turbine Recuperators
,”
Mater. High. Temp.
0960-3409,
16
(
4
), pp.
207
212
.
23.
Lara-Curzio
,
E.
,
Trejo
,
R.
,
More
,
K. L.
,
Maziasz
,
P. J.
, and
Pint
,
B. A.
, 2004,“
Screening and Evaluation of Materials for Microturbine Recuperators
,” ASME Paper No. GT2004-54254.
24.
Swindeman
,
R. W.
,
Maziasz
,
P. J.
,
Pint
,
B. A.
,
Montague
,
J. P.
, and
Fitzpatrick
,
M
, 1996, “
Evaluation of Stainless Steels for Primary Surface Recuperator Applications
,” Oak Ridge National Laboratory Report C/ORNL96-0453, Oak Ridge, TN.
25.
Maziasz
,
P. J.
,
Swindeman
,
R. W.
,
Shingledecker
,
J. P.
,
More
,
K. L.
,
Pint
,
B. A.
,
Lara-Curzio
,
E.
, and
Evans
,
N. D.
, 2003, “
Improving High Temperature Performance of Austenitic Stainless Steels for Advanced Microturbine Recuperators
,”
Parsons 2003: Engineering Issues in Turbine Machinery, Power Plants and Renewables
,
The Institute of Materials, Minerals and Mining, Maney Publishing
, London, UK, pp.
1057
1073
.
26.
Maziasz
,
P. J.
,
Pint
,
B. A.
,
Shingledecker
,
J. P.
,
More
,
K. L.
,
Evans
,
D. E.
, and
Lara-Curzio
,
E.
, 2004, “
Austenitic Stainless Steels and Alloys With Improved High-Temperature Performance for Advanced Microturbine Applications
,” ASME Paper No. GT2004-54239.
27.
Stinner
,
C.
, 2003, “
Processing to Improve Creep and Stress Rupture Properties of Alloy T347 Foil
,” Allegheny Ludlum Technical Center internal report, Brackenridge, PA, available upon request.
28.
Pint
,
B. A.
, and
More
,
K. L.
, 2004, “
Stainless Steels With Improved Oxidation Resistance for Recuperators
,” ASME Paper No. GT2004-53627.
29.
Pint
,
B. A.
,
Swindeman
,
R. W.
,
More
,
K. L.
, and
Tortorelli
,
P. F.
, 2001, “
Materials Selection for High Temperature (750-1000°C) Metallic Recuperators for Improved Efficiency Microturbines
,” ASME Paper No. 2001-GT-0445.
30.
Harper
,
M. A.
,
Smith
,
G. D.
,
Maziasz
,
P. J.
, and
Swindeman
,
R. W.
, 2001, “
Materials Selection for High Temperature Metal Recuperators
,” ASME Paper No. 2001-GT-0540.
31.
Pint
,
B. A.
,
More
,
K. L.
, and
Tortorelli
,
P. F.
, 2002, “
The Effect of Water Vapor on Oxidation Performance in Alloys Used In Recuperators
,” ASME Paper No. GT-2002-30543.
32.
Maziasz
,
P. J.
,
Pint
,
B. A.
,
Swindeman
,
R. W.
,
More
,
K. L.
, and
Lara-Curzio
,
E.
, 2003, “
Selection, Development and Testing of Stainless Steels and Alloys for High-Temperature Recuperator Applications
,” ASME Paper No. GT-2003-38762.
33.
Swindeman
,
R. W.
, 1998, “
Stainless Steels With Improved Strength for Service at 760°C and Above
,”
Fatigue, Environmental Factors and New Materials
, Book No. H01155, PVP-Vol. 374,
ASME
, New York, pp.
291
298
.
34.
Staubli
,
M.
, et al.
, “
Materials for Advanced Steam Power Plants: The European COST522 Action
,”
Parsons 2003: Engineering Issues in Turbine Machinery, Power Plants and Renewables
,
The Institute of Materials, Minerals and Mining, Maney Publishing
, London, UK, pp.
305
324
.
35.
Blum
,
R.
, and
Vanstone
,
R. W.
, “
Materials Development for Boilers and Steam Turbines Operating at 700°C
,”
Parsons 2003: Engineering Issues in Turbine Machinery, Power Plants and Renewables
,
The Institute of Materials, Minerals and Mining, Maney Publishing
, London, UK, pp.
489
510
.
36.
Shingledecker
,
J. P.
,
Swindeman
,
R. W.
,
Klueh
,
R. L.
, and
Maziasz
,
P. J.
, 2004, “
Mechanical Properties and Analysis of Ultra-Supercritical Steam Boiler Materials
,”
Proceedings of the 29th International Technical Conference on Coal Utilization & Fuel Systems
,
National Energy Technology Laboratory
,
Morgantown, WV
.
37.
Kikuchi
,
M.
,
Sakakibara
,
M.
,
Otoguro
,
Y.
,
Mimura
,
H.
,
Araki
,
S.
, and
Fujita
,
T.
, 1987, “
An Austenitic Heat Resisting Steel Tube Developed For Advanced Fossil-Fired Steam Plants
,”
High Temperature Alloys, Their Exploitable Potential
,
Elsevier Science
, New York, pp.
267
276
.
38.
Takahashi
,
T.
, 1988, “
Development of High-Strength 20Cr-25Ni (NF709) Steel for USC Boiler Tubes
,” Nippon Steel Technical Report No. 38, July, Nippon Steel Corp., Tokyo, Japan.
39.
Quality and Properties of NF709 Austenitic Stainless Steel for Boiler Turbing Applications
, 1996, Nippon Steel Corp., Revision 1.1, Tokyo, Japan.
40.
Lara-Curzio
,
E.
,
Maziasz
,
P. J.
,
Pint
,
B. A.
,
Stewart
,
M.
,
Hamrin
,
D.
,
Lipovich
,
N.
, and
DeMore
,
D.
, 2002, “
Test Facility for Screening and Evaluating Candidate Materials for Advanced Microturbine Recuperators
,” ASME Paper No. GT-2002-30581.
41.
Lara-Curzio
,
E.
,
Trejo
,
R.
,
More
,
K. L.
,
Maziasz
,
P. J.
, and
Pint
,
B. A.
, 2005, “
Evaluation and Characterization of Iron- and Nickel-Based Alloys for Microturbine Recuperators
,” ASME Paper No. GT2005-68630.
You do not currently have access to this content.