The turbomachinery aerodynamic design process is characterized both by its complexity and the reliance on designer experience for success. Complexity has led to the design being decomposed into modules; the specification of their interfaces is a key outcome of preliminary design and locks-in much of the final performance of the machine. Yet preliminary design is often heavily influenced by previous experience. While modularity makes the design tractable, it complicates the appropriate specification of the module interfaces to maximize whole-system performance: coupling of modularity and designer experience may reduce performance. This paper sets out to examine how such a deficit might occur and to quantify its cost in terms of efficiency. Two disincentives for challenging decomposition decisions are discussed. The first is where tried-and-tested engineering “rules of thumb” accord between modules: the rational engineer will find alluring a situation where each module can be specified in a way that maximizes its efficiency in isolation. The second is where there is discontinuity in modeling fidelity, and hence difficulty in accurately assessing performance exchange rates between modules. In order to both quantify and reduce the potential cost of this coupling, we have recast the design problem in such a way that what were previously module interface constraints become key system design variables. An example application of our method to the design of a generic turbofan core compression system is introduced. It is shown that nearly one percentage point of the equivalent compressor adiabatic efficiency can be saved.

1.
Cumpsty
,
N. A.
, and
Greitzer
,
E. M.
, 2004, “
Ideas and Methods of Turbomachinery Analysis: A Historical View
,”
J. Propul. Power
0748-4658,
20
(
1
), pp.
15
26
.
2.
Sobieszczanski-Sobieski
,
J.
, 1990, “
Sensitivity Analysis and Multidisciplinary Optimization for Aircraft Design: Recent Advances and Results
,”
J. Aircr.
0021-8669,
27
(
12
), pp.
993
100
.
3.
Gallimore
,
S.
, 1998, “
Axial Flow Compressor Design
,”
The Successful Exploitation of CFD in Turbomachinery
,
IMechE
,
London, UK
.
4.
Wisler
,
D. C.
, 1998, “
The Technical and Economic Relevance of Understanding Blade Row Interaction Effects in Turbomachinery
,”
Blade Row Interference Effects in Axial Turbomachinery Stages
(
Lecture Series 1998-02
),
von Karman Institute For Fluid Dynamics
.
5.
Walsh
,
P. P.
, and
Fletcher
,
P.
, 2004,
Gas Turbine Performance
,
Blackwell Science
,
Oxford, UK
.
6.
Norris
,
G.
,
Dominy
,
R. G
, and
Smith
A. D.
, 1998, “
Strut Influences Within a Diffusing Annular S-Shaped Duct
,” ASME Paper No. 98-GT-425.
7.
Wallin
,
F.
, and
Eriksson
L.-E.
, 2006, “
Response Surface-Based Transition Duct Shape Optimization
,” ASME Paper No. GT2006-90978.
8.
Bailey
,
D. W.
,
Britchford
,
K. M.
,
Carrotte
,
J. F.
, and
Stevens
,
S. J.
, 1997, “
Performance Assessment of an Annular S-Shaped Duct
,”
ASME J. Turbomach.
0889-504X,
119
(
1
), pp.
149
156
.
9.
Cumpsty
,
N. A.
, 1989,
Compressor Aerodynamics
,
Longmans
,
Harlow, UK
.
10.
Jarrett
,
J. P.
,
Dawes
,
W. N.
, and
Clarkson
,
P. J.
, 2007, “
An Approach to Integrated Turbomachinery Design
,”
ASME J. Turbomach.
0889-504X,
129
(
3
), pp.
488
494
.
11.
Howell
,
A. R.
, and
Calvert
,
W. J.
, 1978, “
A New Stage Stacking Technique For Axial-Flow Compressor Performance Prediction
,”
ASME J. Eng. Power
0022-0825,
100
(
4
), pp.
698
703
.
12.
Miller
,
D. C.
, and
Wasdell
,
D. L.
, 1987, “
Off-Design Prediction of Compressor Blade Losses
,”
Proceedings of the IMechE: Turbomachinery—Efficiency Prediction and Improvement
,
IMechE
,
London, UK
, Paper No. C279/87.
13.
Wright
,
P. I.
, and
Miller
,
D. C.
, 1991, “
An Improved Compressor Performance Prediction Model
,”
Proceedings of the IMechE: Turbomachinery: Latest Developments in a Changing Scene
,
IMechE
,
Bury St. Edmunds, UK
, Paper No. C423/028.
14.
Lomax
,
H.
,
Pulliam
,
T. H.
, and
Zingg
,
D. W.
, 2001,
Fundamentals of Computational Fluid Dynamics
,
Springer
,
New York
.
15.
Harlow
,
F. H.
, and
Welsh
,
J. E.
, 1965, “
Numerical Calculation of Time Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
0031-9171,
8
, pp.
2182
2197
.
16.
Patankar
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
New York
.
17.
Tannehill
,
J. C.
,
Anderson
,
D. A.
, and
Pletcher
,
R. H.
, 1997,
Computational Fluid Mechanics and Heat Transfer
,
Taylor & Francis
,
New York
.
18.
Ortiz-Duenas
,
C.
,
Miller
,
R. J.
,
Hodson
,
H. P.
, and
Longley
,
J. P.
, 2007, “
Effect of Length on Compressor Inter-Stage Duct Performance
,” ASME Paper No. GT2007-27752.
19.
Cumpsty
,
N. A.
, 1997,
Jet Propulsion
,
Cambridge University Press
,
Cambridge, UK
.
20.
Ghisu
,
T.
,
Molinari
,
M.
,
Parks
,
G. T.
,
Dawes
,
W. N.
,
Jarrett
,
J. P.
, and
Clarkson
,
P. J.
, 2007, “
Axial Compressor Intermediate Duct Design and Optimization
,”
Proceedings of the Third AIAA MDO Specialist Conference
, Honolulu.
You do not currently have access to this content.