A combined experimental and numerical investigation of the heat transfer characteristics inside an impingement cooled combustor liner heat shield has been conducted. Due to the complexity and irregularity of heat shield configurations, standard correlations for regular impingement fields are insufficient and detailed investigations of local heat transfer enhancement are required. The experiments were carried out in a perspex model of the heat shield using a transient liquid crystal method. Scaling of the model allowed to achieve jet Reynolds numbers of up to Rej=34,000 without compressibility effects. The local air temperature was measured at several positions within the model to account for an exact evaluation of the heat transfer coefficient. Analysis focused on the local heat transfer distribution along the heat shield target plate, side rims, and central bolt recess. The results were compared with values predicted by a standard correlation for a regular impingement array. The comparison exhibited large differences. While local values were up to three times larger than the reference value, the average heat transfer coefficient was approximately 25% lower. This emphasized that standard correlations are not suitable for the design of complex impingement cooling pattern. For thermal optimization the detailed knowledge of the local variation of the heat transfer coefficient is essential. From the present configuration, some concepts for possible optimization were derived. Complementary numerical simulations were carried out using the commercial computational fluid dynamics (CFD) code ANSYS CFX. The motivation was to evaluate whether CFD can be used as an engineering design tool in the optimization of the heat shield configuration. For this, a validation of the numerical results was required, which for the present configuration was achieved by determining the degree of accuracy to which the measured heat transfer rates could be computed. The predictions showed good agreement with the experimental results, both for the local Nusselt number distributions as well as for averaged values. Some overprediction occurred in the stagnation regions, however, the impact on overall heat transfer coefficients was low and average deviations between numerics and experiments were in the order of only 5–20%. The numerical investigation showed that contemporary CFD codes can be used as suitable means in the thermal design process.

1.
Buchlin
,
J. -M.
, 2000, “
Convective Heat Transfer in Impinging Gas-Jet Systems
,”
Lecture Series 2000–03
, von Karman Institute for Fluid Dynamics, pp.
1
33
.
2.
Han
,
B.
, and
Goldstein
,
R.
, 2000, “
Aero-Thermal Performance of Internal Cooling Systems in Turbomachines
,”
Lecture Series 2000–03
, von Karman Institute for Fluid Dynamics, pp.
34
57
.
3.
Chambers
,
A.
,
Gillespie
,
D.
,
Ireland
,
P.
, and
Mitchell
,
M.
, 2006, “
Enhancement of Impingement Cooling in a High Cross Flow Channel Using Shaped Impingement Cooling Holes
,” ASME Paper No. GT2006-91229.
4.
Son
,
C.
,
Gillespie
,
D.
,
Ireland
,
P.
, and
Dailey
,
G.
, 2001, “
Heat Transfer and Flow Characteristics of an Engine Representative Impingement Cooling System
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
154
160
.
5.
Martin
,
H.
, 1977, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
. 0077-8923
6.
Han
,
B.
, and
Goldstein
,
R.
, 2001, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
147
161
. 0077-8923
7.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M.
, and
Button
,
B.
, 1992, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
0142-727X,
13
, pp.
106
115
.
8.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
, 1979, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
101
, pp.
526
531
. 0022-1481
9.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
, 1980, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
102
, pp.
132
137
. 0022-1481
10.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Su
,
C. C.
, 1984, “
Heat Transfer Characteristics for Jet Array Impingement With Initial Crossflow
,”
ASME J. Heat Transfer
,
106
, pp.
34
41
. 0022-1481
11.
Florschuetz
,
L. W.
, and
Su
,
C. C.
, 1987, “
Effects of Crossflow Temperature on Heat Transfer Within an Array of Impinging Jets
,”
ASME J. Heat Transfer
,
109
, pp.
74
82
. 0022-1481
12.
Florschuetz
,
L. W.
,
Truman
,
C.
, and
Metzger
,
D. E.
, 1981, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
, pp.
337
342
. 0022-1481
13.
Bailey
,
J.
, and
Bunker
,
R.
, 2002, “
Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent
,”
Proceedings of the ASME Turbo Expo 2002
, Amsterdam, Netherlands.
14.
Obot
,
N. T.
, and
Trabold
,
T. A.
, 1987, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer
,
109
, pp.
872
879
. 0022-1481
15.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. -C.
, 1998, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
1
), pp.
73
79
.
16.
Cheong
,
B. C. Y.
,
Ireland
,
P. T.
,
Ling
,
J. P. C. W.
, and
Ashforth-Frost
,
S.
, 2005, “
Flow and Heat Transfer Characteristics of an Impinging Jet in Crossflow at Low Nozzle-to-Plate Spacings
,” ASME Paper No. GT2005-68636.
17.
Uysal
,
U.
,
Li
,
P. W.
,
Chyu
,
M. K.
, and
Cunha
,
F. J.
, 2006, “
Heat Transfer on Internal Surfaces of a Duct Subjected to Impingement of a Jet Array With Varying Jet Hole-Size and Spacing
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
158
165
.
18.
Esposito
,
E.
,
Ekkad
,
S.
,
Kim
,
Y.
, and
Dutta
,
S.
, 2007, “
Comparing Extended Port and Corrugated Wall Jet Impingement Geometry for Combustor Liner Backside Cooling
,” ASME Paper No. GT2007-27390.
19.
Van Treuen
,
K.
,
Wang
,
Z.
,
Ireland
,
P.
,
Jones
,
T.
, and
Kohler
,
S.
, 1996, “
Comparison and Prediction of Local and Average Heat Transfer Coefficients Under an Array of Inline and Staggered Impinging Jets
,” ASME Paper No. 96-GT-163.
20.
Chambers
,
A.
,
Gillespie
,
D.
,
Ireland
,
P.
, and
Dailey
,
G.
, 2005, “
The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
358
365
.
21.
Gritsch
,
M.
,
Schönwälder
,
D.
, and
Estaun-Echavarren
,
C.
, 2006, “
Thermal Performance of Enhanced Combustor Liner Impingement Cooling Schemes
,”
Proceedings of the 11th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Paper No. ISROMAC11-2006-20.
22.
Behnia
,
M.
,
Parneix
,
S.
, and
Durbin
,
P.
, 1997, “
Accurate Modeling of Impinging Jet Heat Transfer
,”
Center for Turbulence Research, Annual Research Briefs
,
NASA Ames/Stanford University
,
Stanford, CA
, pp.
149
164
.
23.
Zuckerman
,
N.
, and
Lior
,
N.
, 2005, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
544
552
.
24.
Coussirat
,
M.
,
Van Beeck
,
J.
,
Mestres
,
M.
,
Egusguiza
,
M.
,
Buchlin
,
J. -M.
, and
Escaler
,
X.
, 2005, “
Computational Fluid Dynamics Modeling of Impinging Gas-Jet Systems: I. Assessment of Eddy Viscosity Models
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
691
703
.
25.
Spring
,
S.
,
Weigand
,
B.
,
Krebs
,
W.
, and
Hase
,
M.
, 2006, “
CFD Heat Transfer Predictions of a Single Circular Jet Impinging With Crossflow
,” AIAA Paper No. 2006-3589.
26.
Spring
,
S.
,
Weigand
,
B.
,
Krebs
,
W.
, and
Hase
,
M.
, 2008, “
CFD Heat Transfer Predictions for a Gas Turbine Combustor Impingement Cooling Configuration
,”
Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, ISROMAC12-2008-20222.
27.
Luff
,
J. K.
, and
McGuirk
,
J. J.
, 2001, “
Numerical Prediction of Combustor Heatshield Flow and Heat Transfer With Sub-Grid-Scale Modelling of Pedestals
,” ASME Paper No. 2001-GT-0144.
28.
Luff
,
J. K.
, and
McGuirk
,
J.
, 2001, “
Conjugate Heat Transfer Predictions of a Combustor Heatshield Containing Pedestals
,”
RTO AVT Symposium Proceedings of RTO AVT Symposium 2001
, Loen, Norway, May 7–11, Paper No. RTO-MP 069(1).
29.
Riahi
,
A.
, and
Borns
,
F. G.
, 2004, “
Gas Turbine Combustor Heat Shield Impingement Cooling Baffle
,” ASME Paper No. GT2004-53160.
30.
Lempereur
,
C.
,
Andral
,
R.
, and
Prudhomme
,
J. Y.
, 2008, “
Surface Temperature Measurement on Engine Components by Means of Irreversible Thermal Coatings
,”
Meas. Sci. Technol.
0957-0233,
19
, p.
105501
.
31.
Lauffer
,
D.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
,
Dahlke
,
S.
, and
Liebe
,
R.
, 2007, “
Heat Transfer Enhancement by Impingement Cooling in a Combustor Liner Heat Shield
,” ASME Paper No. GT2007-27908.
32.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 2000, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
0957-0233,
11
(
7
), pp.
969
986
.
33.
Poser
,
J.
,
von Wolfersdorf
,
R.
, and
Lutum
,
E.
, 2007, “
Advanced Evaluation Of Transient Heat Transfer Experiments Using Thermochromic Liquid Crystals
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
221
(
6
), pp.
793
801
.
34.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
, 2004,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
35.
Poser
,
R.
,
von Wolfersdorf
,
J.
,
Lutum
,
E.
, and
Semmler
,
K.
, 2008, “
Performing Heat Transfer Experiments in Blade Cooling Circuits Using a Transient Technique With Thermochromic Liquid Crystals
,” ASME Paper No. GT2008-50364.
36.
Kline
,
S. J.
and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
37.
Menter
,
F.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
1605
.
38.
I. B.
Celik
,
U.
Ghia
,
P. J.
Roache
,
C. J.
Freitas
,
H.
Coleman
, and
P. E.
Raad
, 2008, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
0098-2202,
130
, p.
078001
.
39.
Richardson
,
L.
, and
Gaunt
,
A.
, 1927, “
The Deferred Approach to the Limit. Part I. Single Lattice. Part II. Interpenetrating Lattices
,”
Philos. Trans. R. Soc. London, Ser. A
,
226
, pp.
299
361
. 0264-3952
40.
Roache
,
P. J.
, 1994, “
A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
405
413
.
41.
Roache
,
P. J.
, 2003, “
Conservatism of the Grid Convergence Index in Finite Volume Computations on Steady-State Fluid Flow and Heat Transfer
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
731
735
.
42.
Goldstein
,
R. J.
, and
Behbahani
,
A. I.
, 1982, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
25
(
9
), pp.
1377
1382
.
43.
Pope
,
S. B.
, 1978, “
An Explanation of the Turbulent Round-Jet/Plane-Jet Anomaly
,”
AIAA J.
,
16
(
3
), pp.
279
281
. 0001-1452
You do not currently have access to this content.