In this paper, three-dimensional multiblade row unsteady Navier–Stokes simulations at a hot streak temperature ratio of 2.0 have been performed to reveal the effects of rotor tip clearance on the inlet hot streak migration characteristics in high pressure stage of a vaneless counter-rotating turbine. The numerical results indicate that the migration characteristics of the hot streak in the high pressure turbine rotor are dominated by the combined effects of secondary flow, buoyancy, and leakage flow in the rotor tip clearance. The leakage flow trends to drive the hotter fluid toward the blade tip on the pressure surface and to the hub on the suction surface. Under the effect of the leakage flow, even partial hotter fluid near the pressure surface is also driven to the rotor suction surface through the tip clearance. Compared with the case without rotor tip clearance, the heat load of the high pressure turbine rotor is intensified due to the effects of the leakage flow. And the results indicate that the leakage flow effects trend to increase the low pressure turbine rotor inlet temperature at the tip region. The air flow with higher temperature at the tip region of the low pressure turbine rotor inlet will affect the flow and heat transfer characteristics in the downstream low pressure turbine.

1.
Keith
,
B. D.
,
Basu
,
D. K.
, and
Stevens
,
C.
, 2000, “
Aerodynamic Test Results of Controlled Pressure Ratio Engine (COPE) Dual Spool Air Turbine Rotating Rig
,” ASME Paper No. 2000-GT-0632.
2.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Abhari
,
R. S.
,
Johnson
,
P. D.
, and
Montesdeoca
,
X. A.
, 2000, “
Experimental and Computational Investigation of the Time-Averaged and Time-Resolved Pressure Loading on a Vaneless Counter-Rotating Turbine
,” ASME Paper No. 2000-GT-0445.
3.
Zhao
,
Q. J.
,
Wang
,
H. S.
,
Zhao
,
X. L.
, and
Xu
,
J. Z.
, 2006, “
Numerical Analysis of 3-D Unsteady Flow in a Vaneless Counter-Rotating Turbine
,”
J. Eng. Thermophys.
,
27
(
1
), pp.
35
38
.
4.
Zhao
,
Q. J.
,
Wang
,
H. S.
,
Zhao
,
X. L.
, and
Xu
,
J. Z.
, 2006, “
Three-Dimensional Numerical Investigation of Vaneless Counter-Rotating Turbine
,”
J. Propul. Tech.
,
27
(
2
), pp.
114
–118,
123
.
5.
Wintucky
,
W. T.
, and
Stewart
,
W. L.
, 1958, “
Analysis of Two-Stage Counter-Rotating Turbine Efficiencies in Terms of Work and Speed Requirements
,” NACA, Report No. RM E57L05.
6.
Louis
,
J. F.
, 1985, “
Axial Flow Contra-Rotating Turbines
,” ASME Paper No. 85-GT-218.
7.
Munk
,
M.
, and
Prim
,
R. C.
, 1947, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
33
, pp.
137
141
.
8.
Lakshminarayana
,
B.
, and
Horlock
,
J. H.
, 1973, “
Generalized Expressions for Secondary Vorticity Using Intrinsic Coordinates
,”
J. Fluid Mech.
0022-1120,
59
, pp.
97
115
.
9.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
, 1989, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
0748-4658,
5
(
1
), pp.
64
71
.
10.
Roback
,
R. J.
, and
Dring
,
R. P.
, 1993, “
Hot Streaks and Phantom Cooling in a Turbine Rotor Passage: Part 1—Separate Effects
,”
ASME J. Turbomach.
0889-504X,
115
(
4
), pp.
657
666
.
11.
Prasad
,
D.
, and
Hendricks
,
G. J.
, 2000, “
A Numerical Study of Secondary Flow in Axial Turbines With Application to Radial Transport of Hot Streaks
,”
ASME J. Turbomach.
0889-504X,
122
(
4
), pp.
667
673
.
12.
Zhao
,
Q. J.
,
Wang
,
H. S.
,
Tang
,
F.
,
Zhao
,
X. L.
, and
Xu
,
J. Z.
, 2008, “
Investigation of Influencing Factors of Hot Streaks Migration in High Pressure Stage of a Vaneless Counter-Rotating Turbine
,”
Sci. China, Ser. E: Technol. Sci.
1006-9321,
51
(
2
), pp.
127
144
.
13.
Sharma
,
O. P.
,
Pickett
,
G. F.
, and
Ni
,
R. H.
, 1992, “
Assessment of Unsteady Flows in Turbines
,”
ASME J. Turbomach.
0889-504X,
114
(
1
), pp.
79
90
.
14.
Gundy-Burlet
,
K. L.
, and
Dorney
,
D. J.
, 1996, “
Three-Dimensional Simulations of Hot Streak Clocking in a 1–1/2 Stage Turbine
,” AIAA Paper No. 96-2791.
15.
Shang
,
T.
, and
Epstein
,
A. H.
, 1997, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
ASME J. Turbomach.
0889-504X,
119
(
3
), pp.
544
553
.
16.
Stabe
,
R. G.
,
Whitney
,
W. J.
, and
Moffitt
,
T. P.
, 1984, “
Performance of a High-Work Low-Aspect Ratio Turbine Tested With a Realistic Inlet Radial Temperature Profile
,” AIAA Paper No. 84-1161.
17.
Guenette
,
G. R.
, 1985, “
A Fully Scaled Short Duration Turbine Experiment
,” ScD thesis, MIT, Cambridge, MA.
18.
Shang
,
T.
,
Guenette
,
G. R.
,
Epstein
,
A. H.
, and
Saxer
,
A. P.
, 1995, “
The Influence of Inlet Temperature Distortion on Rotor Heat Transfer in a Transonic Turbine
,” AIAA Paper No. 95-3042.
19.
Dorney
,
D. J.
, and
Sondak
,
D. L.
, 2000, “
Effects of Tip Clearance on Hot Streak Migration in a High-Subsonic Single-Stage Turbine
,”
ASME J. Turbomach.
0889-504X,
122
(
4
), pp.
613
620
.
20.
Castillon
,
L.
,
Laroche
,
E.
, and
Sgarzi
,
O.
, 2003, “
Unsteady Three-Dimensional Navier-Stokes Analysis of a Hot Streak Transport Through an Axial High Pressure Turbine Stage
,” ISABE Paper No. 2003-1063.
21.
2005, Fine Turbo User Manual 6-2-9, NUMECA International.
22.
Arnone
,
A.
, and
Pacciani
,
R.
, 1996, “
Rotor-Stator Interaction Analysis Using the Navier-Stokes Equations and a Multigrid Method
,”
ASME J. Turbomach.
0889-504X,
118
(
3
), pp.
679
689
.
23.
Rai
,
M. M.
, 1989, “
Three-Dimensional Navier-Stokes Simulations of Turbine Rotor-Stator Interaction. Part I—Methodology
,”
J. Propul. Power
0748-4658,
5
(
3
), pp.
305
311
.
24.
Spalart
,
P.
, and
Allmaras
,
S.
, 1994, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
0034-1223,
1
, pp.
5
21
.
You do not currently have access to this content.