The performance of suction-side gill region film cooling is investigated using the University of Utah transonic wind tunnel and a simulated turbine vane in a two-dimensional cascade. The effects of film cooling hole orientation, shape, and number of rows, and their resulting effects on the aerodynamic losses, are considered for four different hole configurations: round axial (RA), shaped axial (SA), round radial (RR), and round compound (RC). The mainstream Reynolds number based on axial chord is 500,000, exit Mach number is 0.35, and the tests are conducted using the first row of holes, or both rows of holes at blowing ratios of 0.6 and 1.2. Carbon dioxide is used as the injectant to achieve density ratios of 1.77–1.99 similar to values present in operating gas turbine engines. Presented are the local distributions of total pressure loss coefficient, local normalized exit Mach number, and local normalized exit kinetic energy. Integrated aerodynamic losses (IAL) increase anywhere from 4% to 45% compared with a smooth blade with no film injection. The performance of each hole type depends on the airfoil configuration, film cooling configuration, mainstream flow Mach number, number of rows of holes, density ratio, and blowing ratio, but the general trend is an increase in IAL as either the blowing ratio or the number of rows of holes increase. In general, the largest total pressure loss coefficient Cp magnitudes and the largest IAL are generally present at any particular wake location for the RR or SA configurations, regardless of the film cooling blowing ratio and number of holes. The SA holes also generally produce the highest local peak Cp magnitudes. IAL magnitudes are generally lowest with the RA hole configuration. A one-dimensional mixing loss correlation for normalized IAL values is also presented, which matches most of the both rows data for RA, SA, RR, and RC hole configurations. The equation also provides good representation of the RA, RC, and RR first row data sets.

1.
Zhang
,
Q.
, and
Ligrani
,
P.
, 2006, “
Aerodynamic Losses of a Cambered Turbine Vane: Influences of Surface Roughness and Freestream Turbulence Intensity
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
536
546
.
2.
Pullan
,
G.
, 2006, “
Secondary Flows and Loss Caused by Blade Row Interaction in a Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
484
491
.
3.
Benner
,
M.
,
Sjolander
,
S.
, and
Moustapha
,
S.
, 2004, “
Shock Wave-Film Cooling Interactions in Transonic Flows
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
277
287
.
4.
Day
,
C. R. B.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
, 2000, “
Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes Under Engine Representative Conditions
,”
Exp. Fluids
0723-4864,
29
, pp.
117
129
.
5.
Ito
,
S.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
, 1980, “
Aerodynamic Loss in a Gas Turbine Stage With Film Cooling
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
964
970
.
6.
Hong
,
Y.
,
Fu
,
C.
,
Cunzhong
,
G.
, and
Zhongqi
,
W.
, 1997, “
Investigation of Cooling-Air Injection on the Flow Field Within a Linear Turbine Cascade
,” ASME Paper No. 97-GT-520.
7.
Haller
,
B. R.
, and
Camus
,
J. J.
, 1984, “
Aerodynamic Loss Penalty Produced by Film Cooling Transonic Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
198
205
.
8.
Kollen
,
O.
, and
Koschel
,
W.
, 1985, “
Effect of Film-Cooling on the Aerodynamic Performance of a Turbine Cascade
,” Paper No. AGARD CP-390.
9.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
, 1992, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
173
183
.
10.
Giel
,
P. W.
,
Bunker
,
R. S.
,
Van Fossen
,
G. J.
, and
Boyle
,
R. J.
, 2000, “
Heat Transfer Measurements and Predictions on a Power Generation Gas Turbine Blade
,” ASME Paper No. 2000-GT-209.
11.
Boyle
,
R. J.
,
Luci
,
B. L.
,
Verhoff
,
V. G.
,
Camperchioli
,
W. P.
, and
La
,
H.
, 1998, “
Aerodynamics of a Transitioning Turbine Stator Over a Range of Reynolds Numbers
,” ASME Paper No. 98-GT-285.
12.
Ames
,
F. E.
, and
Plesniak
,
M. W.
, 1997, “
The Influence of Large-Scale, High Intensity Turbulence on Vane Aerodynamics Losses, Wake Growth, and the Exit Turbulence Parameters
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
182
192
.
13.
Jouini
,
D. B. M.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
, 2001, “
Aerodynamic Performance of a Transonic Turbine Cascade at Off-Design Conditions
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
510
518
.
14.
Radomsky
,
R. W.
, and
Thole
,
K. A.
, 2002, “
Detailed Boundary Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
107
118
.
15.
Boyle
,
R. J.
,
Lucci
,
B. L.
, and
Senyitko
,
R. G.
, 2002, “
Aerodynamics Performance and Turbulence Measurements in a Turbine Vane Cascade
,” ASME Paper No. GT2002-30434.
16.
Zhang
,
Q.
,
Lee
,
S. W.
, and
Ligrani
,
P. M.
, 2004, “
Effects of Surface Roughness and Turbulence Intensity on the Aerodynamic Losses Produced by the Suction Surface of a Simulated Turbine Airfoil
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
257
265
.
17.
Zhang
,
Q.
, and
Ligrani
,
P. M.
, 2004, “
Mach Number/Surface Roughness Effects on Symmetric Transonic Turbine Airfoil Aerodynamic Losses
,”
J. Propul. Power
0748-4658,
20
(
6
), pp.
1117
1125
.
18.
Christopher
,
R. J.
,
Xavier
,
A. M.
,
Friedrich
,
O. S.
,
Charles
,
D. M.
, and
Matthew
,
M.
, 1998, “
High Pressure Turbine Vane Annular Cascade Heat Flux and Aerodynamic Measurements With Comparisons to Predictions
,” ASME Paper No. 98-GT-430.
19.
Coton
,
T.
,
Arts
,
T.
, and
Lefebvre
,
M.
, 2001, “
Effects of Reynolds and Mach Numbers on the Profile Losses of a Conventional Low-Pressure Turbine Rotor Cascade With an Increasing Pitch-Chord Ratio
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
215
(
6
), pp.
763
772
.
20.
Chappell
,
J.
,
Ligrani
,
P. M.
,
Sreekanth
,
S.
, and
Lucas
,
T.
, 2008, “
Suction-Side Gill-Region Film Cooling: Effects of Hole Shape and Orientation on Adiabatic Effectiveness and Heat Transfer Coefficient
,” ASME Paper No. GT2008-50798.
21.
Jackson
,
D. J.
,
Lee
,
K. L.
,
Ligrani
,
P. M.
, and
Johnson
,
P. D.
, 2000, “
Transonic Aerodynamics Losses Due to Turbine Airfoil, Suction Surface Film Cooling
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
317
326
.
22.
Furukawa
,
T.
, and
Ligrani
,
P. M.
, 2002, “
Transonic Film Cooling Effectiveness From Shaped Holes on a Simulated Turbine Airfoil
,”
J. Thermophys. Heat Transfer
0887-8722,
16
, pp.
228
237
.
23.
Zhang
,
Q.
,
Sandberg
,
D.
, and
Ligrani
,
P.
, 2005, “
Influence of Mach Number and Freestream Turbulence Intensity on the Aerodynamic Losses of a Turbine Vane
,”
J. Propul. Power
0748-4658,
21
(
6
), pp.
988
996
.
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
25.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
26.
Bammert
,
K.
, and
Sandstede
,
H.
, 1980, “
Measurements of the Boundary layer Development Along a Turbine Blade With Rough Surfaces
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
978
983
.
27.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
621
656
.
28.
Boyle
,
R. J.
, and
Senyitko
,
R. G.
, 2003, “
Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics
,” ASME Paper No. GT2003-38580.
You do not currently have access to this content.