Abstract

A new simple engineering parameter to evaluate the stability of multistage axial compressors has been derived. It is based on the stability analysis for a small circumferential disturbance imposed on the steady-state flow field. The analytical model assumes that the flow field is two dimensional and incompressible in the ducts between blade rows although the steady-state density is permitted to change across the blade rows. The resulting stall parameter contains terms that relate to the slope of the pressure rise characteristic of the blade rows and the inertia effects of the fluid in the blade rows and ducts. The parameter leads to the classical stability criteria based on the slope of the overall total to static pressure rise coefficient in the limit where constant density and constant blade rotational speed are assumed across the compressor. The proposed stall parameter has been calculated for three different multistage axial flow compressors, and the results indicate that the parameter has a strong correlation with the measured stability of the compressors. The good correlation with the test data demonstrates that the newly derived stall parameter captures much of the fundamental physics of instability inception in multistage compressors, and that it can be a good guideline for designers and engineers needing to evaluate the stability boundary of multistage machines.

References

1.
Greitzer
,
E. M.
, 1981, “
The Stability of Pumping Systems—The 1980 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
0098-2202,
103
(
2
), pp.
193
242
.
2.
Stenning
,
A. H.
, 1980, “
Rotating Stall and Surge
,”
ASME J. Fluids Eng.
0098-2202,
102
, pp.
14
20
.
3.
Smith
,
L. H.
, 1960, “
Blade Row Instability
,” GE, Internal Report.
4.
Moore
,
F. K.
, 1984, “
A Theory of Rotating Stall of Multistage Axial Compressors: Part I—Small Disturbances
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
313
334
.
5.
Longley
,
J. P.
, 1994, “
A Review of Non-Steady Flow Models for Compressor Stability
,”
ASME J. Turbomach.
0889-504X,
116
(
2
), pp.
202
215
.
6.
Demargne
,
A. A. J.
, and
Longley
,
J. P.
, 1997, “
Comparisons Between Measured and Calculated Stall Development in Four High-Speed Multi-Stage Compressors
,”
ASME
Paper No. 97-GT-467.
7.
Hendricks
,
G. J.
,
Bonnaure
,
L. P.
,
Longley
,
J. P.
,
Greitzer
,
E. M.
, and
Epstein
,
A. H.
, 1993, “
Analysis of Rotating Stall Onset in High-Speed Axial Flow Compressors
,” AIAA Paper No. 93-2233.
8.
Escuret
,
J. F.
, and
Garnier
,
V.
, 1994, “
Numerical Simulations of Surge and Rotating Stall in Multi-Stage Axial-Flow Compressors
,” AIAA Paper No. 94-3202.
9.
Hendricks
,
J. G.
,
Sabnis
,
J. S.
, and
Feulner
,
M. R.
, 1996, “
Analysis of Instability Inception in High-Speed Multi-Stage Axial-Flow Compressors
,”
ASME
Paper No. 96-GT-360.
10.
Gong
,
Y.
,
Tan
,
C. S.
,
Gordon
,
K. A.
, and
Greitzer
,
E. M.
, 1999, “
A Computational Model for Short Wavelength Stall Inception and Development in Multi-Stage Compressors
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
726
734
.
11.
Nakano
,
T.
,
Kodama
,
H.
, and
Imanari
,
K.
, 1999, “
Numerical Simulations of Instability Inception and Development in High-Speed Multi-Stage Axial-Flow Compressors
,” ISABE Paper No. 99-7228.
12.
Chen
,
J. P.
,
Hathaway
,
M. D.
, and
Herrick
,
G. P.
, 2007, “
Pre-Stall Behavior of a Transonic Axial Compressor Stage via Time-Accurate Numerical Simulation
,”
ASME
Paper No. GT2007-27926.
13.
McDougall
,
N. M.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
, 1990, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
116
125
.
14.
Garnier
,
V. H.
,
Epstein
,
A. H.
, and
Greitzer
,
E. M.
, 1991, “
Rotating Waves as a Stall Inception Indication in Axial Compressors
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
290
301
.
15.
Moore
,
F. K.
, and
Greitzer
,
E. M.
, 1986, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part 1
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
108
, pp.
68
76
;
Moore
,
F. K.
, and
Greitzer
,
E. M.
, 1986, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part 2
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
108
, pp.
231
239
.
16.
Day
,
I. J.
, 1993, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
1
9
.
17.
Camp
,
T. R.
, and
Day
,
I. J.
, 1998, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
393
401
.
18.
Day
,
I. J.
,
Breuer
,
T.
,
Escuret
,
J.
,
Cherrett
,
M.
, and
Wilson
,
A.
, 1999, “
Stall Inception and the Prospects for Active Control in Four High Speed Compressors
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
18
27
.
19.
Simpson
,
A. K.
, and
Longley
,
J. P.
, 2007, “
An Experimental Study of the Inception of Rotating Stall in a Single-Stage Low-Speed Axial Compressor
,”
ASME
Paper No. GT2007-27181.
20.
Cumpsty
,
N. A.
, and
Greitzer
,
E. M.
, 1982, “
A Simple Model of Compressor Stall Cell Propagation
,”
Trans. ASME
0097-6822,
104
, pp.
170
176
.
21.
Tryfonidis
,
M.
,
Etchevers
,
J. D.
,
Pduano
,
J. D.
,
Epstein
,
A. H.
, and
Hendricks
,
G. J.
, 1995, “
Pre-Stall Behavior of Several High-Speed Compressors
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
62
80
.
22.
Day
,
I. J.
, 1993, “
Review of Stall, Surge, and Active Control in Axial Compressors
,” ISABE Paper No. 93-7011.
You do not currently have access to this content.