The blade tip region encounters high thermal loads because of the hot gas leakage flows, and it must therefore be cooled to ensure a long durability and safe operation. A common way to cool a blade tip is to design serpentine passages with 180 deg turns under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase the blade tip lifetime. Dimples and protrusions are well recognized as effective devices to augment heat transfer in various applications. In this paper, enhanced heat transfer of an internal blade tip-wall has been predicted numerically. The computational models consist of a two-pass channel with a 180 deg turn and arrays of hemispherical dimples or protrusions internally mounted on the tip-wall. Inlet Reynolds numbers are in the range of 100,000–600,000. The computations are three dimensional, steady, incompressible, and nonrotating. The overall performance of the two-pass channels is also evaluated. It is found that due to the combination of turning impingement and protrusion crossflow or dimple advection, the heat transfer coefficient of the augmented tip is a factor of 2.0 higher than that of a smooth tip. This augmentation is achieved at the cost of a penalty of pressure drop by around 5%. By comparing the present dimples’ or protrusions’ performance with others in previous works, it is found that the augmented tips show the best performance, and the dimpled or protruded tips are superior to those pin-finned tips when the active area enhancement is excluded. It is suggested that dimples and protrusions can be used to enhance blade tip heat transfer and hence improve blade tip cooling.

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
2.
Goldstein
,
R. J.
, 2001,
Heat Transfer in Gas Turbine Systems
,
Annals of the New York Academy of Sciences
,
New York
.
3.
Sunden
,
B.
, and
Faghri
,
M.
, 2001,
Heat Transfer in Gas Turbines
,
WIT Press
,
Southampton, UK
.
4.
Chyu
,
M. K.
, 1990, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
926
932
.
5.
Bailey
,
J. C.
, and
Bunker
,
R. S.
, 2003, “
Heat Transfer and Friction in Channels With Very High Blockage 45-degree Staggered Turbulators
,” ASME Paper No. GT2003-38611.
6.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
, 2003, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
0001-1452,
41
, pp.
337
362
.
7.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F.
, 2003, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passages
,” ASME Paper No. 97-GT-437.
8.
Moon
,
H. K.
,
O’Connell
,
T.
, and
Glezer
,
B.
, 2000, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
307
313
.
9.
Moon
,
S. W.
, and
Lau
,
S. C.
, 2002, “
Turbulent Heat Transfer Measurement on a Wall With Concave and Cylindrical Dimples in a Square Channel
,” ASME Paper No. GT-2002-30208.
10.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
, 2003, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR=4) With Dimples
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
555
564
.
11.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmood
,
G. I.
, and
Hill
,
M. L.
, 2001, “
Flow Structure Due to Dimple Depression on a Channel Surface
,”
Phys. Fluids
1070-6631,
13
, pp.
3442
3451
.
12.
Mahmood
,
G. I.
,
Sabbagh
,
M. Z.
, and
Ligrani
,
P. M.
, 2001, “
Heat Transfer in a Channel With Dimples and Protrusions on Opposite Walls
,”
J. Thermophys. Heat Transfer
0887-8722,
15
(
3
), pp.
275
283
.
13.
Ligrani
,
P. M.
,
Mahmood
,
G. I.
,
Harrison
,
J. L.
,
Clayton
,
C. M.
, and
Nelson
,
D. L.
, 2001, “
Flow Structure and Local Nusselt Number Variations in a Channel With Dimples and Protrusions on Opposite Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4413
4425
.
14.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
, 2002, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2011
2020
.
15.
Burgess
,
N. K.
,
Oliveira
,
M. M.
, and
Ligrani
,
P. M.
, 2003, “
Nusselt Number Behavior on Deep Dimpled Surface Within a Channel
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
11
18
.
16.
Won
,
S. Y.
,
Zhang
,
Q.
, and
Ligrani
,
P. M.
, 2005, “
Comparison of Flow Structure Above Dimpled Surface With Different Dimple Depths in a Channel
,”
Phys. Fluids
1070-6631,
17
, p.
045105
.
17.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
, 2005, “
Effect of Dimple Depth on Channel Nusselt Numbers and Friction Factor
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
839
847
.
18.
Ligrani
,
P. M.
,
Burgess
,
N. K.
, and
Won
,
S. Y.
, 2005, “
Nusselt Numbers and Flow Structure On and Above a Shallow Dimpled Surface Within a Channel Including Effects of Inlet Turbulence Intensity Level
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
321
330
.
19.
Hwang
,
S. D.
,
Kwon
,
H.
, and
Cho
,
H. H.
, 2008, “
Heat Transfer With Dimple/Protrusion Arrays in a Rectangular Duct With a Low Reynolds Number Range
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
916
926
.
20.
Lin
,
Y. L.
,
Shih
,
T. I. P.
, and
Chyu
,
M. K.
, 1999, “
Computations of Flow and Heat Transfer in a Channel With Rows of Hemispherical Cavities
,” ASME Paper No. 99-GT-263.
21.
Isaev
,
S. A.
,
Leont’ev
,
A. I.
, and
Baranov
,
P. A.
, 2000, “
Identification of Self-Organized Vortexlike Structures in Numerically Simulated Turbulent Flow of a Viscous Incompressible Liquid Streaming Around a Well on a Plane
,”
Tech. Phys. Lett.
1063-7850,
26
, pp.
15
18
.
22.
Park
,
J.
,
Desam
,
P. R.
, and
Ligrani
,
P. M.
, 2004, “
Numerical Predictions of Flow Structure Above a Dimpled Surface in a Channel
,”
Numer. Heat Transfer, Parat A
1040-7782,
45
, pp.
1
20
.
23.
Won
,
S. Y.
, and
Ligrani
,
P. M.
, 2004, “
Numerical Predictions of Flow Structure and Local Nusselt Number Ratios Along and Above Dimpled Surfaces With Different Dimple Depths in a Channel
,”
Numer. Heat Transfer, Parat A
1040-7782,
46
, pp.
549
570
.
24.
Park
,
J.
, and
Ligrani
,
P. M.
, 2005, “
Numerical Predictions of Heat Transfer and Fluid Flow Characteristics for Seven Different Surfaces in a Channel
,”
Numer. Heat Transfer, Parat A
1040-7782,
47
, pp.
209
232
.
25.
Bunker
,
R. S.
, 2008, “
The Augmentation of Internal Blade Tip-Cap Cooling by Arrays of Shaped Pins
,”
ASME J. Turbomach.
0889-504X,
130
, p.
041007
.
26.
Xie
,
G. N.
,
Sundén
,
B.
,
Wang
,
L.
, and
Utriainen
,
E.
, 2009, “
Enhanced Heat Transfer on the Tip-Wall in a Rectangular Two-Pass Channel by Pin-Fin Arrays
,”
Numer. Heat Transfer, Part A
1040-7782,
55
, pp.
739
761
.
27.
Xie
,
G. N.
,
Sundén
,
B.
,
Utriainen
,
E.
, and
Wang
,
L.
, 2010, “
Computational Analysis of Pin-Fin Arrays Effects of Internal Heat Transfer Enhancement of a Blade Tip-Wall
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
031901
.
28.
Xie
,
G. N.
,
Sundén
,
B.
,
Wang
,
L.
, and
Utriainen
,
E.
, 2009, “
Effect of Pin Base-Fillet on Heat Transfer Enhancement of an Internal Blade Pin-Finned Tip-Wall
,” ASME Paper No. HT2009-88116.
29.
Xie
,
G. N.
,
Sundén
,
B.
,
Wang
,
L.
, and
Utriainen
,
E.
, 2009, “
Augmented Heat Transfer of an Internal Blade Tip by Full or Partial Arrays of Pin-Fins
,”
International Symposium on Heat Transfer in Gas Turbine Systems
, August 9–14, Antalya, Turkey.
30.
Xie
,
G. N.
, and
Sundén
,
B.
, “
Conjugated Analysis of Heat Transfer Enhancement of an Internal Blade Tip-Wall With Pin-Fin Arrays
,”
J. Enhanced Heat Transfer
1065-5131, in press.
31.
Shih
,
T. -H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, 1995, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows Model Development and Validation
,”
Comput. Fluids
0045-7930,
24
(
3
), pp.
227
238
.
You do not currently have access to this content.