Film cooling performance of a new shaped hole, waist-shaped slot hole, is studied in this paper. Experimental measurement and numerical simulation are carried out to investigate the film cooling character and physics of this new shaped hole. And comparisons between the waist-shaped slot hole and two kinds of console holes are also performed. Both the cooling effectiveness distribution and the heat transfer coefficient distribution of the waist-shaped slot hole are similar with those of the console hole with a large divergence angle because of the effect of the waist-shaped slot hole’s structure. The middle constriction structure of the waist-shaped slot hole and the coupled vortices makes jets from the waist-shaped slot holes produce higher cooling effectiveness in the midspan region between adjacent holes. And also due to the effect of the middle constriction structure, the heat transfer coefficient of the waist-shaped slot hole is very high in the upstream midspan region between adjacent holes. However, the heat transfer coefficient in the downstream midspan region is lower than that in the region near the hole centerline because of the effect of the coupled vortices. The waist-shaped slot holes provide the surface with very good thermal protection, especially in the upstream region. Although the console holes with small a exit-entry area ratio provide better thermal protection than the waist-shaped slot holes due to small turbulence intensity, the flow resistance characteristic of the waist-shaped slot hole, which has a larger exit-entry area ratio, is much better.

1.
Bunker
,
R. S.
, 2005, “
A Review of Shaped Hole Turbine Film Cooling Technology
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
441
453
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
, 1974, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
595
607
.
3.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
807
813
.
4.
Gritsch
,
M.
,
Schulz
,
A.
, and
Witting
,
S.
, 1998, “
Adiabatic Wall Effectiveness Measurements of Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
549
556
.
5.
Yu
,
Y.
,
Yen
,
C. -H.
,
Shih
,
T. I.-P.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
, 2002, “
Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
820
827
.
6.
Makki
,
Y. H.
, and
Jakubowski
,
G.
, 1986, “
An Experimental Study of Film Cooling From Diffused Trapezoidal Shaped Holes
,” AIAA Paper No. 86-1326.
7.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
800
806
.
8.
Gritsch
,
M.
,
Schulz
,
A.
, and
Witting
,
S.
, 1998, “
Heat Transfer Coefficients Measurements of Film Cooling Holes With Expanded Exits
,”
ASME
Paper No. 98-GT-28.
9.
Hay
,
N.
, and
Lampard
,
D.
, 1995, “
The Discharge Coefficient of Flared Film Cooling Holes
,”
ASME
Paper No. 95-GT-15.
10.
Gritsch
,
M.
,
Schulz
,
A.
, and
Witting
,
S.
, 1998, “
Discharge Coefficient Measurements of Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
557
563
.
11.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Witting
,
S.
, and
Sharp
,
E.
, 2000, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
146
153
.
12.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2002, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME
Paper No. GT-2002-30170.
13.
Dittmar
,
J.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2002, “
Assessment of Various Film Cooling Configurations Including Shaped and Compound Angle Holes Based on Large Scale Experiments
,”
ASME
Paper No. GT-2002-30176.
14.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
, 2000, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
224
232
.
15.
Day
,
C. R. B.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
, 2000, “
Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes Under Engine Representative Conditions
,”
Exp. Fluids
0723-4864,
29
, pp.
117
129
.
16.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
, 2002, “
A Converging Slot Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
453
460
.
17.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
, 2002, “
A Converging Slot Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
461
471
.
18.
Sargison
,
J. E.
,
Oldfield
,
M. L. G.
,
Guo
,
S. M.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
, 2005, “
Flow Visualization of the External Flow From a Converging Slot-Hole Film-Cooling Geometry
,”
Exp. Fluids
0723-4864,
38
, pp.
304
318
.
19.
Azzi
,
A.
, and
Jubran
,
B. A.
, 2006, “
Numerical Modelling of Film Cooling From Converging Slot-Hole
,”
Heat Mass Transfer
0947-7411,
43
, pp.
381
388
.
20.
Liu
,
C. L.
,
Zhu
,
H. R.
, and
Bai
,
J. T.
, 2008, “
Study on the Physics of Film-Cooling Effectiveness Enhancement by the Converging-Expanding Hole
,”
Journal of Aerospace Power
,
23
(
4
), pp.
598
604
.
21.
Liu
,
C. L.
,
Zhu
,
H. R.
,
Bai
,
J. T.
, and
Xu
,
D. C.
, 2009, “
Film Cooling Performance of Converging Slot Holes With Different Exit-Entry Area Ratios
,”
ASME
Paper No. GT-2009-59002.
22.
Liu
,
C. L.
,
Zhu
,
H. R.
,
Bai
,
J. T.
, and
Xu
,
D. C.
, 2009, “
Experimental Research on the Thermal Performance of Converging Slot Holes With Different Divergence Angles
,”
Exp. Therm. Fluid Sci.
0894-1777,
33
, pp.
808
817
.
23.
Vedula
,
R. J.
, and
Metzger
,
D. E.
, 1991, “
A Method for the Simultaneous Determination of Local Effectiveness and Heat Transfer Distributions in Three Temperature Convection Situations
,”
ASME
Paper No. 91-GT-345.
24.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
, and
Ireland
,
P. T.
, 2003, “
A Novel Transient Liquid Crystal Technique to Determine Heat Transfer Coefficient Distributions and Adiabatic Wall Temperature in a Three Temperature Problem
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
538
546
.
25.
Drost
,
U.
,
Bolcs
,
A.
, and
Hoffs
,
A.
, 1997, “
Utilization of the Transient Liquid Crystal Technique for Film Cooling Effectiveness and Heat Transfer Investigations on a Flat Plane and a Turbine Airfoil
,”
ASME
Paper No. 97-GT-026.
26.
Liu
,
C. L.
,
Zhu
,
H. R.
, and
Bai
,
J. T.
, 2009, “
A Method for Processing Transient Heat Transfer Measurements in the Presence of Nonuniform Initial Wall Temperature
,”
ASME
Paper No. GT-2009-59001.
27.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
ASME J. Mech. Eng.
,
75
, pp.
3
8
.
28.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2000, “
Impact of Film-Cooling Jets on Turbine Aerodynamic Losses
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
537
545
.
29.
Silieti
,
M.
,
Kassab
,
A. J.
, and
Divo
,
E.
, 2005, “
Film Cooling Effectiveness From a Single Scaled-Up Fan-Shaped Hole—A CFD Simulation of Adiabatic and Conjugate Heat Transfer Models
,”
ASME
Paper No. GT2005-68431.
You do not currently have access to this content.