Previous experimental investigations revealed the existence of acoustic modes in the side cavities of a high-pressure centrifugal compressor. These modes were excited by pressure patterns which resulted from rotor/stator-interactions (often referred to as Tyler/Sofrin-modes). The acoustic modes were significantly influenced by the prevailing flow in the side cavities. The flow field in such rotor/stator-cavities is characterized by a high circumferential velocity component. The circumferential velocity of the flow and the phase velocity of the acoustic eigenmode superimpose each other, so that the frequencies of the acoustic eigenmodes with respect to the stator frame of reference follow from the sum of both velocities. In the previous study the circumferential velocity was estimated based on existing literature and the phase velocities of the acoustic modes were calculated via an acoustic modal analysis. Based on these results the rotational speeds of the compressor, where acoustic modes were excited in resonance, were determined. The present paper is based on these results and focuses on the influence of the swirling flow and the coupling of the excited acoustic modes between the two side cavities. Such a coupling has been predicted in previous numerical studies but no experimental evidence was available at that time. In this study the circumferential velocities of the flow are determined by measuring the actual radial pressure distribution in the side cavities and assuming radial equilibrium. The determined values are directly used for the prediction of the rotational speeds at resonance. The values for the rotational speeds at resonance predicted that way are compared to the resonance speeds found in the experiments. Further on, simultaneously measured pressure fluctuations in the shroud and hub side cavities with respect to the rotor frame of reference give evidence about the coupling of the acoustic modes between the two side cavities in case of resonance. If the experimentally determined swirling flow velocity is accounted for in the prediction of acoustic resonances, the calculated rotational speeds of resonance are in good agreement with the experimental findings in most cases. Neglecting the flow in the cavities, however, leads to large deviations between calculated and experimentally determined rotational speeds. Varying the operating point of the compressor results in changes of the circumferential velocities in the side cavities and, therefore, in changes of the rotational speeds of resonance. Contrary to the acoustic modes calculated via a finite element analysis by the authors of this paper in previous studies the excited acoustic modes in the experiments are mostly not coupled between the two side cavities, but are localized to one of both cavities. This finding is assumed to be caused by the flow field in the compressor.
Skip Nav Destination
e-mail: friedrich.benra@uni-due.de
Article navigation
Research-Article
Influence of the Swirling Flow in the Side Cavities of a High-Pressure Centrifugal Compressor on the Characteristics of Excited Acoustic Modes
N. Petry,
N. Petry
1
e-mail: nico.petry@siemens.com
1Corresponding author.
Search for other works by this author on:
S. König,
S. König
e-mail: koenig.sven@siemens.com
Energy Sector Oil and Gas Division
,Siemens AG
,Duisburg 47053
, Germany
Search for other works by this author on:
F.-K. Benra
e-mail: friedrich.benra@uni-due.de
F.-K. Benra
Institute of Energy and Environmental
Engineering—Turbomachinery
,University of Duisburg-Essen
,Duisburg 47048
, Germany
e-mail: friedrich.benra@uni-due.de
Search for other works by this author on:
N. Petry
e-mail: nico.petry@siemens.com
S. König
e-mail: koenig.sven@siemens.com
Energy Sector Oil and Gas Division
,Siemens AG
,Duisburg 47053
, Germany
F.-K. Benra
Institute of Energy and Environmental
Engineering—Turbomachinery
,University of Duisburg-Essen
,Duisburg 47048
, Germany
e-mail: friedrich.benra@uni-due.de
1Corresponding author.
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the Journal of Turbomachinery. Manuscript received July 2, 2012; final manuscript received July 16, 2012; published online March 25, 2013. Editor: David Wisler.
J. Turbomach. May 2013, 135(3): 031024 (11 pages)
Published Online: March 25, 2013
Article history
Received:
July 2, 2012
Revision Received:
July 16, 2012
Citation
Petry, N., König, S., and Benra, F. (March 25, 2013). "Influence of the Swirling Flow in the Side Cavities of a High-Pressure Centrifugal Compressor on the Characteristics of Excited Acoustic Modes." ASME. J. Turbomach. May 2013; 135(3): 031024. https://doi.org/10.1115/1.4007544
Download citation file:
Get Email Alerts
Cited By
Design Guidelines for Inertial Particle Separators
J. Turbomach
Impact of Trailing Edge Damage on Nozzle Guide Vane Aerodynamic Performance
J. Turbomach (October 2025)
Related Articles
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
J. Turbomach (July,2003)
Causes of Acoustic Resonance in a High-Speed Axial Compressor
J. Turbomach (July,2008)
A 3D Compressible Flow Model for Weak Rotating Waves in Vaneless Diffusers—Part II: Detailed Results
J. Turbomach (July,2012)
Innovative Cavity Modeling for Centrifugal Compressors Aeromechanical Analysis
J. Turbomach (April,2025)
Related Proceedings Papers
Related Chapters
Fluidelastic Instability of Tube Bundles in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)