The off-design performance of a highly loaded low pressure (LP) turbine cascade has been experimentally investigated, at the Aerodynamics and Turbomachinery Laboratory of Genova University, under steady and unsteady incoming flow conditions. Tests have been performed for different Reynolds numbers (Re = 70,000 and Re = 300,000), in order to cover the typical LP turbine working range. The incidence angle has been varied between i = −9 deg and +9 deg, in order to test off-design conditions characterizing the engine. For the unsteady case, upstream wake periodic perturbations have been generated by means of a tangential wheel of radial rods. The cascade and the moving bars system have been located over a common bearing in order to make them rigidly rotating. This solution allows a proper comparison of the cascade robustness at the incidence angle variation under steady and unsteady incoming flows, since all the other operating parameters have been kept the same. In order to survey the variation of the unsteady boundary conditions characterizing the off-design operation of the downstream cascade, time-mean and time-resolved wake structures have been analyzed in detail. For what concerns the cascade performance, profile aerodynamic loadings and total pressure loss coefficients at the cascade exit have been surveyed for the different incidence angles under both steady and unsteady inflows. Different total pressure loss sensitivity at the incidence angle variation has been observed for the steady and the unsteady inflow conditions. Hot-wire anemometer has been employed to obtain the time-mean pressure and suction side boundary layer velocity profiles at the blade trailing edge for the different conditions. The integral parameters at the cascade exit plane help to justify the different loss trend versus incidence angle found for the steady and the unsteady cases, explaining the different sensibility of the blade profile when this operates under realistic unsteady inflow condition.

References

1.
Zhang
,
X. F.
,
Vera
,
M.
,
Hodson
,
H.
, and
Harvey
,
N.
,
2006
, “
Separation and Transition Control in an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Number: Low Speed Investigation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
517
527
.10.1115/1.2187524
2.
Lazaro
,
B. J.
,
Gonzalez
,
E.
, and
Vazquez
,
R.
,
2008
, “
Unsteady Loss Production Mechanisms in Low Reynolds Number, High Lift, Low Pressure Turbine Profiles
,”
ASME
Paper No. GT2007-28142.10.1115/GT2007-28142
3.
Volino
,
R. J.
,
2002
, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions—Part 1: Mean Flow and Turbulence Statistics
,”
ASME J. Turbomach.
,
124
(
4
), pp.
645
655
.10.1115/1.1506938
4.
Bons
,
J. P.
,
Pluim
,
J.
,
Gompertz
,
K.
,
Bloxham
,
M.
, and
Clark
,
J. P.
,
2012
, “
The Application of Flow Control to an Aft-Loaded Low Pressure Turbine Cascade With Unsteady Wakes
,”
ASME J. Turbomach.
,
134
(
3
), p.
031009
.10.1115/1.4000488
5.
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
,
Lengani
,
D.
, and
Bertini
,
F.
,
2012
, “
An Experimental Investigation of the Separated-Flow Transition Under High-Lift Turbine Blade Pressure Gradients
,”
Flow Turbul. Combust.
,
88
(
1–2
), pp.
45
62
.10.1007/s10494-011-9375-7
6.
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2012
, “
Loss Production Mechanisms in a Laminar Separation Bubble
,”
Flow Turbul. Combust.
,
89
(
4
), pp.
547
562
.10.1007/s10494-012-9407-y
7.
Lou
,
W.
, and
Hourmouziadis
,
J.
,
2000
, “
Separation Bubbles Under Steady and Periodic-Unsteady Main Flow Conditions
,”
ASME J. Turbomach.
,
122
(
4
), pp.
634
643
.10.1115/1.1308568
8.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
,
1997
, “
Boundary Layer Development in Axial Compressor and Turbines: Part 1 of 4—Composite Picture
,”
ASME J. Turbomach.
,
119
(
1
), pp.
114
127
.10.1115/1.2841000
9.
Mailach
,
R.
, and
Vogeler
,
K.
,
2004
, “
Aerodynamic Blade Row Interaction in an Axial Compressor—Part I: Unsteady Boundary Layer Development
,”
ASME J. Turbomach.
,
126
(
1
), pp.
35
44
.10.1115/1.1649741
10.
Gompertz
,
K. A.
, and
Bons
,
J. P.
,
2011
, “
Combined Unsteady Wakes and Active Flow Control on a Low-Pressure Turbine Airfoil
,”
AIAA J. Propul. Power
,
27
(
5
), pp.
990
1000
.10.2514/1.B34032
11.
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2013
, “
Experimental Investigation of the Interaction Between Incoming Wakes and Instability Mechanisms in a Laminar Separation Bubble
,”
Exp. Therm. Flow Sci.
,
50
, pp.
54
60
.10.1016/j.expthermflusci.2013.05.004
12.
Stadtmuller
,
P.
,
Fottner
,
L.
, and
Fiala
,
A.
,
2000
, “
Experimental and Numerical Investigation of Wake-Induced Transition on a Highly Loaded LP Turbine at Low Reynolds Numbers
,”
ASME
Paper No. GT2000-0269.10.1115/2000-GT-0269
13.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines
,”
Prog. Aerosp. Sci.
,
41
(
6
), pp.
419
454
.10.1016/j.paerosci.2005.08.001
14.
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2012
, “
Transition Mechanisms in Laminar Separation Bubbles With and Without Incoming Wakes and Synthetic Jet Effects
,”
Exp. Fluids
,
53
(
1
), pp.
173
186
.10.1007/s00348-012-1281-9
15.
Cattanei
,
A.
,
Zunino
,
P.
,
Schröder
,
T.
,
Stoffel
,
B.
, and
Matyschok
,
B.
,
2006
, “
Detailed Analysis of Experimental Investigations on Boundary Layer Transition in Wake Disturbed Flow
,”
ASME
Paper No. GT2006-90128.10.1115/GT2006-90128
16.
Canepa
,
E.
,
Formosa
,
P.
,
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2007
, “
Influence of Aerodynamic Loading on Rotor-Stator Aerodynamic Interaction in a Two-Stage Low Pressure Research Turbine
,”
ASME J. Turbomach.
,
129
(
4
), pp.
765
772
.10.1115/1.2720498
17.
Houtermans
,
R.
,
Coton
,
T.
, and
Arts
,
T.
,
2004
, “
Aerodynamic Performance of a Very High Lift Low Pressure Turbine Blade With Emphasis on Separation Prediction
,”
ASME J. Turbomach.
,
126
(
3
), pp.
406
413
.10.1115/1.1748416
18.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
,
2007
, “
Comparative Investigation of Three Higly Loaded LP Turbine Airfoils: Part II—Measured Profile and Secondary Losses at Off-Design Incidence
,”
ASME
Paper No. GT2007-27538.10.1115/GT2007-27538
19.
Schlichting
,
H.
,
1979
,
Boundary Layer Theory
,
McGraw-Hill
,
New York
.
20.
Boutilier
,
M. S. H.
, and
Yarusevych
,
S.
,
2012
, “
Parametric Study of Separation and Transition Characteristics Over an Airfoil at Low Reynolds Numbers
,”
Exp. Fluids
,
52
(
6
), pp.
1491
1506
.10.1007/s00348-012-1270-z
21.
Satta
,
F.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2014
, “
Loading Distribution Effects on Separated Flow Transition of Ultra-High-Lift Turbine Blades: Steady and Unsteady Inflows
,”
AIAA J. Propul. Power
,
30
(
3
), pp.
845
856
10.2514/1.B34968
22.
Vera
,
M.
, and
Hodson
,
H.
,
2002
, “
Low Speed vs High Speed Testing of LP Turbine Blade-Wake
,”
The 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines
, Cambridge, pp.
1
10
.
You do not currently have access to this content.