In turbomachinery, the steady adjoint method has been successfully used for the computation of derivatives of various objective functions with respect to design variables in gradient-based optimization. However, the continuous advances in computing power and the accuracy limitations of the steady-state assumption lead toward the transition to unsteady computational fluid dynamics (CFD) computations in the industrial design process. Previous work on unsteady adjoint for turbomachinery applications almost exclusively rely upon frequency-domain methods, for both the flow and adjoint equations. In contrast, in this paper, the development the discrete adjoint to the unsteady Reynolds-averaged Navier–Stokes (URANS) solver for three-dimensional (3D) multirow applications, in the time-domain, is presented. The adjoint equations are derived along with the adjoint to the five-stage Runge–Kutta scheme. Communication between adjacent rows is achieved by the adjoint sliding interface method. An optimization workflow that uses unsteady flow and adjoint solvers is presented and tested in two cases, with objective functions accounting for the transient flow in a turbine vane and the periodic flow in a compressor three-row setup.

References

1.
Giles
,
M. B.
, and
Pierce
,
N. A.
,
2000
, “
An Introduction to the Adjoint Approach to Design
,”
Flow, Turbul. Combust.
,
65
(
3–4
), pp.
393
415
.
2.
Jameson
,
A.
, and
Pierce
,
N.
, and
L. M.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
Theor. Comput. Fluid Dyn.
,
3
(
3
), pp.
233
260
.
3.
Vanderplaats
,
G. N.
,
Hicks
,
R. M.
, and
Murman
,
E. M.
,
1975
, “
Application of Numerical Optimization Techniques to Airfoil Design
,”
NASA Conference on Aerodynamic Analyses Requiring Advanced Computers
, Paper No. NASA SP-347.
4.
Baysal
,
O.
, and
Eleshaky
,
M. E.
,
1991
, “
Aerodynamic Sensitivity Analysis Methods for the Compressible Euler Equations
,”
ASME J. Fluids Eng.
,
113
(
4
), pp.
681
688
.
5.
Jameson
,
A.
,
Shankaran
,
S.
, and
Martinelli
,
L.
,
2008
, “
Continuous Adjoint Method for Unstructured Grids
,”
AIAA J.
,
46
(
5
), pp.
1226
1239
.
6.
Papoutsis-Kiachagias
,
E. M.
, and
Giannakoglou
,
K. C.
,
2016
, “
Continuous Adjoint Methods for Turbulent Flows, Applied to Shape and Topology Optimization: Industrial Applications
,”
Arch. Comput. Methods Eng.
,
23
(
2
), pp.
255
299
.
7.
Giannakoglou
,
K. C.
,
Papadimitriou
,
D. I.
,
Papoutsis-Kiachagias
,
E. M.
, and
Kavvadias
,
I. S.
,
2015
, “
Aerodynamic Shape Optimization Using “Turbulent” Adjoint and Robust Design in Fluid Mechanics
,”
Engineering and Applied Sciences Optimization
,
Springer International Publishing
, Cham, Switzerland, pp.
289
309
.
8.
Giles
,
M. B.
,
Duta
,
M. C.
,
Müller
,
J.-D.
, and
Pierce
,
N. A.
,
2003
, “
Algorithm Developments for Discrete Adjoint Methods
,”
AIAA J.
,
41
(
2
), pp.
198
205
.
9.
Mavriplis
,
D. J.
,
2007
, “
Discrete Adjoint-Based Approach for Optimization Problems on Three-Dimensional Unstructured Meshes
,”
AIAA J.
,
45
(
4
), pp.
741
750
.
10.
Peter
,
J. E. V.
, and
Dwight
,
R. P.
,
2010
, “
Numerical Sensitivity Analysis for Aerodynamic Optimization: A Survey of Approaches
,”
Comput. Fluids
,
39
(
3
), pp.
373
391
.
11.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.
12.
He
,
L.
, and
Wang
,
D. X.
,
2010
, “
Concurrent Blade Aerodynamic-Aero-Elastic Design Optimization Using Adjoint Method
,”
ASME J. Turbomach.
,
133
(
1
), p.
011021
.
13.
Ma
,
C.
,
Su
,
X.
, and
Yuan
,
X.
,
2016
, “
An Efficient Unsteady Adjoint Optimization System for Multistage Turbomachinery
,”
ASME J. Turbomach.
,
139
(
1
), p.
011003
.
14.
Duta
,
M. C.
,
Giles
,
M. B.
, and
Campobasso
,
M. S.
,
2002
, “
The Harmonic Adjoint Approach to Unsteady Turbomachinery Design
,”
Int. J. Numer. Methods Fluids
,
40
(
3–4
), pp.
323
332
.
15.
Yi
,
J.
, and
Capone
,
L.
, “
Adjoint-Based Sensitivity Analysis for Unsteady Bladerow Interaction Using Space-Time Gradient Method
,”
ASME J. Turbomach.
,
139
(
11
), p.
111008
.
16.
Nemili
,
A.
,
Özkaya
,
E.
,
Gauger
,
N. R.
,
Kramer
,
F.
,
Hoell
,
T.
, and
Thiele
,
F.
,
2014
, “
Optimal Design of Active Flow Control for a Complex High-Lift Configuration
,”
AIAA
Paper No. 2014-2515.
17.
Thomas
,
J. P.
,
Hall
,
K. C.
, and
Dowell
,
E. H.
,
2005
, “
Discrete Adjoint Approach for Modeling Unsteady Aerodynamic Design Sensitivities
,”
AIAA J.
,
43
(
9
), pp.
1931
1936
.
18.
Mani
,
K.
, and
Mavriplis
,
D. J.
,
2009
, “
Adjoint-Based Sensitivity Formulation for Fully Coupled Unsteady Aeroelasticity Problems
,”
AIAA J.
,
47
(
8
), pp.
1902
1915
.
19.
Mishra
,
A.
,
Mavriplis
,
D.
, and
Sitaraman
,
J.
,
2016
, “
Time-Dependent Aeroelastic Adjoint-Based Aerodynamic Shape Optimization of Helicopter Rotors in Forward Flight
,”
AIAA J.
,
54
(
12
), pp.
3813
3827
.
20.
Nielsen
,
E. J.
,
Diskin
,
B.
, and
Yamaleev
,
N. K.
,
2010
, “
Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids
,”
AIAA J.
,
48
(
6
), pp.
1195
1206
.
21.
Nielsen
,
E. J.
, and
Diskin
,
B.
,
2013
, “
Discrete Adjoint-Based Design for Unsteady Turbulent Flows on Dynamic Overset Unstructured Grids
,”
AIAA J.
,
51
(
6
), pp.
1355
1373
.
22.
Ntanakas
,
G.
, and
Meyer
,
M.
,
2014
, “
Towards Unsteady Adjoint Analysis for Turbomachinery Applications
,”
Sixth European Conference on Computational Fluid Dynamics
(
ECFD
), Barcelona, Spain, July 20–25, pp. 5071–5081.http://congress.cimne.com/iacm-eccomas2014/admin/files/fileabstract/a1557.pdf
23.
Ntanakas
,
G.
, and
Meyer
,
M.
,
2015
, “
The Unsteady Discrete Adjoint Method for Turbomachinery Applications
,”
14th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
(
SUAAAT'14
), Stockholm, Sweden, Sept. 8–11, pp. 1–8.https://zenodo.org/record/823136#.WzC2l1UzbZ4
24.
Lapworth
,
L.
,
2004
, “
Hydra-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation
, Singapore.
25.
Spalart
,
P. R.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 1992-0439.
26.
Wesseling
,
P.
, and
Oosterlee
,
C. W.
,
2001
, “
Geometric Multigrid With Applications to Computational Fluid Dynamics
,”
J. Comput. Appl. Math.
,
128
(
1–2
), pp.
311
334
.
27.
Martinelli
,
L.
,
1987
, “
Calculations of Viscous Flows With a Multigrid Method
,”
Ph.D. thesis
, Princeton University, Princeton, NJ.http://adsabs.harvard.edu/abs/1987PhDT........45M
28.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes
,”
AIAA
Paper No. 1981-1259.
29.
Moinier
,
P.
,
1999
, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,”
Ph.D. thesis
, University of Oxford, Oxford, UK.http://people.maths.ox.ac.uk/gilesm/files/pierre_thesis.pdf
30.
Giles
,
M. B.
,
2000
, “
On the Use of Runge-Kutta Time-Marching and Multigrid for the Solution of Steady Adjoint Equations
,” Oxford University Computing Laboratory, Oxford, UK, Technical Report No.
NA00/10
.https://ora.ox.ac.uk/objects/uuid:8866ebe2-c76f-41d4-817e-04aa078d1858
31.
Griewank
,
A.
, and
Walther
,
A.
,
2008
,
Evaluating Derivatives
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
32.
Hascoet
,
L.
, and
Pascual
,
V.
,
2013
, “
The Tapenade Automatic Differentiation Tool: Principles, Model, and Specification
,”
ACM Trans. Math. Software
,
39
(
3
), pp.
20:1
20:43
.
33.
Milli
,
A.
, and
Shahpar
,
S.
,
2012
, “
PADRAM: Parametric Design and Rapid Meshing System for Complex Turbomachinery Configurations
,”
ASME
Paper No. GT2012-69030.
34.
Hills
,
N.
,
2007
, “
Achieving High Parallel Performance for an Unstructured Unsteady Turbomachinery CFD Code
,”
Aeronaut. J.
,
111
(
1117
), pp.
185
193
.
35.
Rogers
,
S. E.
,
Suhs
,
N. E.
, and
Dietz
,
W. E.
,
2003
, “
Pegasus 5: An Automated Preprocessor for Overset-Grid Computational Fluid Dynamics
,”
AIAA J.
,
41
(
6
), pp.
1037
1045
.
36.
Crumpton
,
P. I.
, and
Giles
,
M. B.
,
1996
, “
Multigrid Aircraft Computations Using the OPlus Parallel Library
,”
Parallel Comput. Fluid Dyn.
, pp.
339
346
.
37.
Nimmagadda
,
S.
,
Economon
,
T. D.
,
Alonso
,
J. J.
,
Silva
,
C.
,
Zhou
,
B. Y.
, and
Albring
,
T.
,
2018
, “
Low-Cost Unsteady Discrete Adjoints for Aeroacoustic Optimization Using Temporal and Spatial Coarsening Techniques
,”
AIAA
Paper No. 2018-1911.
38.
Meyer
,
C. D.
,
2000
,
Matrix Analysis and Applied Linear Algebra
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA, pp.
429
430
.
39.
Yamaleev
,
N.
,
Diskin
,
B.
, and
Nielsen
,
E.
,
2010
, “
Local-in-Time Adjoint-Based Method for Design Optimization of Unsteady Flows
,”
J. Comput. Phys.
,
229
(
14
), pp.
5394
5407
.
40.
Schönweitz
,
D.
,
Voges
,
M.
,
Goinis
,
G.
,
Enders
,
G.
, and
Johann
,
E.
,
2013
, “
Experimental and Numerical Examinations of a Transonic Compressor-Stage With Casing Treatment
,”
ASME
Paper No. GT2013-95550.
41.
Schmitz
,
A.
,
Aulich
,
M.
,
Schönweitz
,
D.
, and
Nicke
,
E.
,
2012
, “
Novel Performance Prediction of a Transonic 4.5 Stage Compressor
,”
ASME
Paper No. GT2012-69003.
You do not currently have access to this content.