Abstract

Chevrons, which are also known as serrations, are initially developed to suppress jet noise radiating from aero-engine nozzles. The associated fluid mechanics are already well known. Compared with jet noise, turbomachinery fan noise has become relatively more important along with the ever-increasing bypass ratio. However, it is still unclear whether the trailing-edge chevrons on the bypass duct would attenuate fan noise and, if the answer is yes, what is the associated mechanism. In this work, we first use a theoretical model based on the Wiener–Hopf method to rapidly conduct parametric studies across a number of different setups. The results from such a theoretical model suggest that the chevrons are also effective in the reduction of fan noise scattering. Next, we perform high-fidelity computational fluid and acoustic simulations for a realistic aero-engine with some representative setups, and the results further confirm the effectiveness of chevrons. Both analytical and numerical results show the associated noise control mechanism, that is, chevrons would induce acoustic mode conversion (especially from low modes to high modes), which shall further result in evanescent waves in the radial direction and the final noise reduction at various radiation angles. The findings may find applications in the next-generation low-noise aero-engine design.

References

1.
Zhang
,
X.
,
2012
, “
Aircraft Noise and Its Nearfield Propagation Computations
,”
Acta Mech. Sin.
,
28
(
4
), pp.
960
977
. 10.1007/s10409-012-0136-1
2.
Liu
,
X.
,
Jiang
,
H.
,
Huang
,
X.
, and
Chen
,
S.
,
2016
, “
Theoretical Model of Scattering From Flow Ducts With Semi-Infinite Axial Liner Splices
,”
J. Fluid Mech.
,
786
, pp.
62
83
. 10.1017/jfm.2015.633
3.
Jiang
,
H.
,
Lau
,
A.
, and
Huang
,
X.
,
2017
, “
An Efficient Algorithm of Wiener-Hopf Method With Graphics Processing Unit for Duct Acoustics
,”
ASME J. Vib. Acoust.
,
139
(
5
), p.
054501
. 10.1115/1.4036471
4.
Jiang
,
H.
,
Lau
,
A.
, and
Huang
,
X.
,
2018
, “
Surrogate Model Based Liner Optimization for Aeroengines and Comparison With Finite Elements
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
034501
. 10.1115/1.4038680
5.
Jiang
,
H.
,
Lau
,
A.
, and
Huang
,
X.
,
2018
, “
Sound Wave Scattering in a Flow Duct With Azimuthally Non-Uniform Liners
,”
J. Fluid Mech.
,
839
, pp.
644
662
. 10.1017/jfm.2018.44
6.
Lau
,
A.
,
Zhong
,
S.
, and
Huang
,
X.
,
2018
, “
Control-Oriented Methods for Turbomachinery Noise Simulation
,”
ASME J. Turbomach.
,
140
(
1
), p.
011001
. 10.1115/1.4038022
7.
Nikam
,
S.
, and
Sharma
,
S.
,
2018
, “
Effect of a Chevron Nozzle on Noise Radiation From a Compressible Jet
,”
AIAA J.
,
56
(
11
), pp.
4361
4378
. 10.2514/1.J056931
8.
Ran
,
L.
,
Ye
,
C.
,
Wan
,
Z.
,
Yang
,
H.
, and
Sun
,
D.
,
2018
, “
Instability Waves and Low-frequency Noise Radiation in the Subsonic Chevron Jet
,”
Acta Mech. Sin.
,
34
(
3
), pp.
421
430
. 10.1007/s10409-017-0725-0
9.
Huang
,
X.
,
2017
, “
Theoretical Model of Acoustic Scattering From a Flat Plate With Serrations
,”
J. Fluid Mech.
,
819
, pp.
228
257
. 10.1017/jfm.2017.176
10.
Ayton
,
L. J.
, and
Kim
,
J. W.
,
2018
, “
An Analytic Solution for the Noise Generated by Gust-Aerofoil Interaction for Plates With Serrated Leading Edges
,”
J. Fluid Mech.
,
853
, pp.
515
536
. 10.1017/jfm.2018.583
11.
Lyu
,
B.
, and
Azarpeyvand
,
M.
,
2017
, “
On the Noise Prediction for Serrated Leading Edges
,”
J. Fluid Mech.
,
826
, pp.
205
234
. 10.1017/jfm.2017.429
12.
Lyu
,
B.
,
Azarpeyvand
,
M.
, and
Sinayoko
,
S.
,
2016
, “
Prediction of Noise From Serrated Trailing Edges
,”
J. Fluid Mech.
,
793
, pp.
556
588
. 10.1017/jfm.2016.132
13.
Tinney
,
C. E.
, and
Jordan
,
P.
,
2008
, “
The Near Pressure Field of Co-axial Subsonic Jets
,”
J. Fluid Mech.
,
611
, pp.
175
204
. 10.1017/S0022112008001833
14.
Xia
,
H.
,
Tucker
,
P. G.
, and
Eastwood
,
S.
,
2009
, “
Large-Eddy Simulations of Chevron Jet Flows With Noise Predictions
,”
Int. J. Heat Fluid Flow
,
30
(
6
), pp.
1067
1079
. 10.1016/j.ijheatfluidflow.2009.05.002
15.
Tide
,
P. S.
, and
Srinivasan
,
K.
,
2010
, “
Effect of Chevron Count and Penetration on the Acoustic Characteristics of Chevron Nozzles
,”
Appl. Acoust.
,
71
(
3
), pp.
201
220
. 10.1016/j.apacoust.2009.08.010
16.
Bin
,
J. U. A.
, and
Hussaini
,
M. Y.
,
2010
, “
Adaptive Mesh Refinement for Chevron Nozzle Jet Flows
,”
Comput. Fluids
,
39
(
6
), pp.
979
993
. 10.1016/j.compfluid.2010.01.008
17.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
. 10.1016/j.paerosci.2010.04.001
18.
Lau
,
A.
, and
Huang
,
X.
,
2018
, “
The Control of Aerodynamic Sound Due to Boundary Layer Pressure Gust Scattering by Trailing Edge Serrations
,”
J. Sound Vib.
,
432
, pp.
133
154
. 10.1016/j.jsv.2018.06.026
19.
Tyacke
,
J.
,
Naqavi
,
I.
,
Wang
,
Z. N.
,
Tucker
,
P.
, and
Boehning
,
P.
,
2017
, “
Predictive Large Eddy Simulation for Jet Aeroacoustics-Current Approach and Industrial Application
,”
ASME J. Turbomach.
,
139
(
8
), p.
081003
. 10.1115/1.4035662
20.
González
,
A. S.
, and
Aparicio
,
J. R. F.
,
2016
, “
Turbine Tone Noise Prediction Using a Linearized Computational Fluid Dynamics Solver: Comparison With Measurements
,”
ASME J. Turbomach.
,
138
(
6
), p.
061006
. 10.1115/1.4032285
21.
Groeneweg
,
J. F.
, and
Rice
,
E.
,
1987
, “
Aircraft Turbofan Noise
,”
ASME J. Turbomach.
,
109
(
1
), pp.
130
141
. 10.1115/1.3262058
22.
Darvish
,
M.
,
Frank
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Numerical and Experimental Study on the Tonal Noise Generation of a Radial Fan
,”
ASME J. Turbomach.
,
137
(
10
), p.
101005
. 10.1115/1.4030498
23.
Noble
,
B.
,
1958
,
Methods Beaded on the Wiener-Hopf Technique for the Solution of Partial Differential Equations
,
Pergamon Press
,
London
.
24.
Munt
,
R. M.
,
1977
, “
The Interaction of Sound With a Subsonic Jet Issuing From a Semi-Infinite Cylindrical Pipe
,”
J. Fluid Mech.
,
83
, pp.
609
640
. 10.1017/S0022112077001384
25.
Gabard
,
G.
, and
Astley
,
R. J.
,
2006
, “
Theoretical Model for Sound Radiation From Annular Jet Pipes: Far- and Near-field Solutions
,”
J. Fluid Mech.
,
549
, pp.
315
341
. 10.1017/S0022112005008037
26.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,” Technical Report No. 620532, SAE Technical Paper.
27.
Geuzaine
,
C.
, and
Remacle
,
J. F.
,
2009
, “
Gmsh: A 3-D Finite Element Mesh Generator With Built-In Pre-and Post-Processing Facilities
,”
Int. J. Numer. Method Eng.
,
79
(
11
), pp.
1309
1331
. 10.1002/nme.v79:11
28.
Huang
,
X.
,
Chen
,
X. X.
,
Ma
,
Z. K.
, and
Zhang
,
X.
,
2008
, “
Efficient Computation of Spinning Modal Radiation Through An Engine Bypass Duct
,”
AIAA J.
,
46
(
6
), pp.
1413
1423
. 10.2514/1.31136
29.
Williamschen
,
M.
, and
Gabard
,
G.
,
2017
, “
Diffraction of Tonal Noise by Chevrons in a Turbofan Exhaust
,” AIAA Paper No. 2017–3032.
30.
Rienstra
,
S. W.
,
1984
, “
Acoustic Radiation From a Semi-infinite Annular Duct in a Uniform Subsonic Mean Flow
,”
J. Sound Vib.
,
94
(
2
), pp.
267
288
. 10.1016/S0022-460X(84)80036-X
31.
Heins
,
A. E.
,
1950
, “
Systems of Wiener–Hopf Equations
,”
Proceedings of the Symposia in Applied Mathematics II
,
New York
, pp.
76
81
.
You do not currently have access to this content.