Abstract

This paper numerically investigated the impact of the holes and their location on the flow and tip internal heat transfer in a U-bend channel (aspect ratio = 1:2), which is applicable to the cooling passage with dirt purge holes in the mid-chord region of a typical gas turbine blade. Six different tip ejection configurations are calculated at Reynolds numbers from 25,000 to 200,000. The detailed three-dimensional flow and heat transfer over the tip wall are presented, and the overall thermal performances are evaluated. The topological methodology, which is first applied to the flow analysis in an internal cooling passage of the blade, is used to explore the mechanisms of heat transfer enhancement on the tip wall. This study concludes that the production of the counter-rotating vortex pair in the bend region provides a strong shear force and then increases the local heat transfer. The side-mounted single hole and center-mounted double holes can further enhance tip heat transfer, which is attributed to the enhanced shear effect and disturbed low-energy fluid. The overall thermal performance of the optimum hole location is a factor of 1.13 higher than that of the smooth tip. However, if double holes are placed on the upstream of a tip wall, the tip surface cannot be well protected. The results of this study are useful for understanding the mechanism of heat transfer enhancement in a realistic gas turbine blade and for efficient designing of blade tips for engine service.

References

1.
Bunker
,
R. S.
,
2001
, “
A Review of Turbine Blade Tip Heat Transfer
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
64
79
.
2.
Curtis
,
R.
,
Miglietti
,
W.
, and
Pelle
,
M.
,
2001
, “
Development and Implementation of Repair Processes for Refurbishment of W501F, Row 1 Turbine Blades
,”
Proceedings of ASME TURBO EXPO 2001
,
June 4–7
,
New Orleans, LA, USA
, ASME Paper No. 2001-GT-0569.
3.
Bunker
,
R. S.
,
2004
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
271
285
.
4.
Halila
,
E. E.
,
Lenahan
,
D. T.
, and
Thomas
,
T. T.
(
1982
). “
Energy Efficient Engine
,”
General Electric Company, NASA CR-167955
.
5.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2002
, “
Heat Transfer Coefficient and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
Proceedings of ASME TURBO EXPO 2002
,
June 3–6
,
Amsterdam, Netherlands
, ASME Paper No. 2002-GT-30194.
6.
Hohlfeld
,
E. M.
,
Christophel
,
J. R.
,
Couch
,
E. L.
, and
Thole
,
K. A.
,
2003
, “
Predictions of Cooling From Dirt Purge Holes Along the Tip of a Turbine Blade
,”
Proceedings of ASME TURBO EXPO 2003
,
June 16–19
,
Atlanta, GA, USA
, ASME Paper No. 2003-GT-38251.
7.
Yang
,
H.
,
Chen
,
H. C.
, and
Han
,
J. C.
,
2004
, “
Numerical Prediction of Film Cooling and Heat Transfer With Different Film-Hole Arrangements on the Plane and Squealer Tip of a Gas Turbine Blade
,”
Proceedings of ASME TURBO EXPO 2004
,
June 14–17
,
Vienna, Austria
, ASME Paper No. 2004-GT-53199.
8.
Yang
,
H.
,
Chen
,
H. C.
, and
Han
,
J. C.
,
2006
, “
Film-Cooling Prediction on Turbine Blade Tip With Various Film Hole Configurations
,”
AIAA J. Thermophys. Heat Transf.
,
20
(
3
), pp.
558
568
.
9.
Yan
,
X.
,
Huang
,
Y.
, and
He
,
K.
,
2017
, “
Investigations Into Heat Transfer and Film Cooling Effect on a Squealer-Winglet Blade Tip
,”
Int. J. Heat Mass Transf.
,
115
, pp.
955
978
.
10.
Bunker
,
R. S.
,
2008
, “
The Augmentation of Internal Blade Tip-Cap Cooling by Arrays of Shaped Pins
,”
ASME J. Turbomach.
,
130
(
4
),
041007
.
11.
Xie
,
G. N.
,
Sundén
,
B.
,
Wang
,
L.
, and
Utriainen
,
E.
,
2009
, “
Augmented Heat Transfer of an Internal Blade Tip Wall With Pin-Fins
,”
Proceedings of ASME TURBO EXPO 2009
,
June 8–12
,
Orlando, FL, USA
, ASME Paper No. 2009-GT-59410.
12.
Ledezma
,
G. A.
, and
Bunker
,
R. S.
,
2014
, “
The Optimal Distribution of Chordwise Rib Fin Arrays for Blade Tip Cap Underside Cooling
,”
ASME J. Turbomach.
,
136
(
1
),
011007
.
13.
Xie
,
G. N.
, and
Sundén
,
B.
,
2010
, “
Numerical Predictions of Augmented Heat Transfer of an Internal Blade Tip-Wall by Hemispherical Dimples
,”
Int. J. Heat Mass Transf.
,
53
, pp.
5639
5650
.
14.
Xie
,
G. N.
,
Sundén
,
B.
, and
Wang
,
Q.
,
2011
, “
Predictions of Enhanced Heat Transfer of an Internal Blade Tip-Wall With Hemispherical Dimples or Protrusions
,”
ASME J. Turbomach.
,
133
(
4
),
041005
.
15.
Xie
,
Y.
,
Shi
,
D.
, and
Shen
,
Z.
,
2017
, “
Experimental and Numerical Investigation of Heat Transfer and Friction Performance for Turbine Blade Tip Cap With Combined Pin-Fin-Dimple/Protrusion Structure
,”
Int. J. Heat Mass Transf.
,
104
, pp.
1120
1134
.
16.
Shen
,
Z.
,
Qu
,
H.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2013
, “
Effect of Bleed Hole on Flow and Heat Transfer Performance of U-Shaped Channel With Dimple Structure
,”
Int. J. Heat Mass Transf.
,
66
, pp.
10
22
.
17.
Scheepers
,
G.
, and
Morris
,
R. M.
,
2009
, “
Experimental Study of Heat Transfer Augmentation Near the Entrance to a Film Cooling Hole in a Turbine Blade Cooling Passage
,”
ASME J. Turbomach.
,
131
(
4
),
044501
.
18.
Cukurel
,
B.
,
Selcan
,
C.
, and
Arts
,
T.
,
2013
, “
Film Cooling Extraction Effects on the Aero-Thermal Characteristics of Rib Roughened Cooling Channel Flow
,”
ASME J. Turbomach.
,
135
,
021016
.
19.
Du
,
C.
,
Li
,
L.
,
Fan
,
X.
, and
Feng
,
Z.
,
2017
, “
Rotational Influences on Aerodynamic and Heat Transfer Behavior of Gas Turbine Blade Vortex Cooling With Bleed Holes
,”
Appl. Therm. Eng.
,
121
, pp.
302
313
.
20.
Zhao
,
Z.
,
Luo
,
L.
,
Zhou
,
X.
, and
Wang
,
S.
,
2018
, “
Effect of Coolant Mass Flow Rate of Dirt Purge Hole on Heat Transfer and Flow Characteristics at a Turbine Blade Tip Underside
,”
Proceedings of ASME TURBO EXPO 2018
,
June 11–15
,
Oslo, Norway
, ASME Paper No. 2018-GT-76156.
21.
ICEM, A.
,
2009
,
ANSYS ICEM CFD 11.0: Help Manual
,
ANSYS Inc.
,
USA
.
22.
Fluent
,
A.
,
2009
,
ANSYS FLUENT 12.0: Theory Guide
,
Fluent Inc.
,
USA
.
23.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamics: the Finite Volume Method
,
John Wiley & Sons Inc.
,
New York
.
24.
Sundén
,
B.
,
2012
,
Introduction to Heat Transfer
,
WIT Press
,
Southampton, UK
.
25.
Kang
,
S.
,
1990
, “
An Application of Topological Analysis to Studying the Three-Dimensional Flow in Cascades; Part I—Topological Rules for Skin-Friction Lines and Section Streamlines
,”
Appl. Math. Mech.
,
11
(
5
), pp.
489
495
.
26.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.
27.
Kan
,
X.
,
Lu
,
H.
, and
Zhong
,
J.
,
2016
, “
Topological Characterization of Vortex Structures on a Transonic Compressor Stator During the Stalling Process
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
230
(
3
), pp.
566
580
.
28.
Kan
,
X.
,
Wang
,
S.
,
Luo
,
L.
, and
Su
,
J.
,
2018
, “
Research on the Applicability of Using Curved Blade to Optimize the Flow Losses Weight Distribution of a Linear Compressor Cascade With Different Flow Separation Types
,”
Proceedings of ASME TURBO EXPO 2018
,
June 11–15
,
Oslo, Norway
, ASME Paper No. 2018-GT-75936.
29.
Zhang
,
H.
,
Wang
,
S.
, and
Wang
,
Z.
,
2007
, “
Variation of Vortex Structure in a Compressor Cascade at Different Incidences
,”
J. Propul. Power
,
23
(
1
), pp.
221
226
.
30.
Tan
,
C.
,
Zhang
,
H.
,
Chen
,
H.
, and
Yamamoto
,
A.
,
2012
, “
Blade Bowing Effect on Aerodynamic Performance of a Highly Loaded Turbine Cascade
,”
J. Propul. Power
,
26
(
3
), pp.
604
608
.
31.
Dalmann
,
U
.,
1983
, “
Topological Structures of Three-Dimensional Flow Separation
,” DFVLR Rep., No. 221-82-A07, West Germany.
32.
Bunker
,
R. S.
,
2007
, “
Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,”
ASME J. Turbomach.
,
129
(
2
), pp.
193
201
.
33.
Webb
,
R. L.
, and
Kim
,
N. H.
,
1994
,
Principle of Enhanced Heat Transfer
, 2nd ed.,
Taylor & Francis
,
New York
.
34.
Xie
,
G.
,
Sundén
,
B.
,
Wang
,
L.
, and
Utriainen
,
E.
,
2009
, “
Enhanced Internal Heat Transfer on the Tip-Wall in a Rectangular Two-Pass Channel (AR = 1: 2) by Pin-fin Arrays
,”
Numer. Heat Transfer, Part A
,
55
, pp.
739
761
.
35.
Xie
,
G.
,
Sundén
,
B.
,
Utriainen
,
E.
, and
Wang
,
L.
,
2010
, “
Computational Analysis of Pin-Fin Arrays Effects on Internal Heat Transfer Enhancement of a Blade Tip Wall
,”
ASME J. Heat Transfer
,
132
,
031901
.
36.
Cimina
,
S.
,
Wang
,
C.
,
Wang
,
L.
,
Niro
,
A.
, and
Sundén
,
B.
,
2015
, “
Experimental Study of Pressure Drop and Heat Transfer in a U-Bend Channel With Various Guide Vanes and Ribs
,”
J. Enhanced Heat Transfer
,
22
, pp.
29
45
.
You do not currently have access to this content.