Abstract

This paper presents the experimental and numerical evaluation and comparison of the different flow fields downstream of a turbine center frame duct and a low-pressure turbine (LPT) stage, generated by varying the inlet flow conditions to the turbine center frame (TCF) duct. The measurements were carried out in an engine-representative two-stage two-spool test turbine facility at the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. The rig consists of a high-pressure turbine (HPT) and a LPT turbine stage, connected via a TCF with non-turning struts. Four individual high-pressure turbine purge flowrates and two low-pressure turbine purge flowrates were varied to achieve different engine-relevant TCF and LPT inlet flow conditions. The experimental data were acquired by means of five-hole-probe (5HP) area traverses upstream and downstream of the TCF and downstream of the LPT. A steady Reynolds-averaged Navier–Stokes (RANS) simulation taking all purge flows in account was used for comparison, and additional insights are gained from a numerical variation of the HPT and LPT purge flowrates. The focus of this study is on the impact of the variations in TCF inlet conditions on the secondary flow generation through the TCF duct and the carryover effects on the exit flow field and performance of the LPT stage. Existing work is limited by either investigating multistage LPT configurations with generally very few measurements behind the first stage or by not including relevant HPT secondary flow structures in setting up the LPT inflow conditions. This work addresses both of these shortcomings and presents new insight into the TCF and LPT aerodynamic behavior at varying the HPT and LPT purge flows. The results demonstrate the importance of the HPT flow structures and their evolution through the TCF duct for setting up the LPT inflow conditions and ultimately for assessing the performance of the first LPT stage.

References

1.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolent Injection in a High Pressure Turbine Stage: Part 1—Aerodynamic Measurements in the Stationary Frame
,”
ASME J. Turbomach.
,
123
(
4
), pp.
687
696
. 10.1115/1.1401026
2.
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2016
, “
Experimental Investigation of Turbine Stage Flow Field and Performance at Varying Cavity Purge Rates and Operating Speeds
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
,
ASME
Paper No. GT2016-57735.
3.
Jenny
,
P.
,
Abhari
,
R.
,
Rose
,
M.
,
Brettschneider
,
M.
,
Gier
,
J.
, and
Engel
,
K.
,
2011
, “
Low-Pressure Turbine End Wall Design Optimisation and Experimental Verification in the Presence of Purge Flow
,
20th International Symposium on Air Breathing Engines, ISABE Paper No. ISABE 2011-1717, 09
.
4.
Schrewe
,
S.
,
Werschnik
,
H.
, and
Schiffer
,
H.-P.
,
2013
, “
Experimental Analysis of the Interaction Between Rim Seal and Main Annulus Flow in a Low Pressure Two Stage Axial Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051003
. 10.1115/1.4023015
5.
Zerobin
,
S.
,
Aldrian
,
C.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2018
, “
Aerodynamic Performance of Turbine Center Frames With Purge Flows–Part II: The Influence of Individual Hub and Tip Purge Flows
,”
ASME J. Turbomach.
,
140
(
6
), pp.
117
124
. 10.1115/1.4039363
6.
Zerobin
,
S.
,
Peters
,
A.
,
Bauinger
,
S.
,
Ramesh
,
A.
,
Steiner
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2018
, “
Aerodynamic Performance of Turbine Center Frames With Purge Flows–Part I: The Influence of Turbine Purge Flow Rates
,”
ASME J. Turbomach.
,
140
(
6
), pp.
105
115
. 10.1115/1.4039362
7.
Pawel
,
J.
,
Borzecki
,
T.
,
Konopa
,
M.
, and
Kubacki
,
S.
,
2018
, “
Prediction of Secondary Flow Features in a Low Pressure Turbine
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
,
ASME
Paper No. GT2018-75673.
8.
Santner
,
C.
,
Paradiso
,
B.
,
Malzacher
,
F.
,
Hoeger
,
M.
,
Hubinka
,
J.
, and
Göttlich
,
E.
,
2011
, “
Evolution of the Flow Through a Turning Mid Turbine Frame Applied Between a Transonic Hp Turbine Stage and a Counter-Rotating Lp Turbine
,”
Proceedings of the 9th European Turbomachinery Conference
,
Istanbul, Turkey
,
Mar. 21–25
, pp.
683
695
.
9.
Faustmann
,
C.
,
Lengani
,
D.
,
Spataro
,
R.
,
Marn
,
A.
,
Göttlich
,
E.
, and
Heitmeir
,
F.
,
2013
, “
Experimental Investigation of the Noise Generation and Propagation for Different Turning Mid Turbine Frame Setups in a Two-Stage Two-Spool Test Turbine
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
,
ASME
Paper No. GT2013-95698.
10.
Bauinger
,
S.
,
Behre
,
S.
,
Lengani
,
D.
,
Guendogdu
,
Y.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
On the Turbulence Measurements and Analyses in a Two-Stage Two-spool Turbine Rig
,”
ASME J. Turbomach.
,
139
(
7
), p.
071008
. 10.1115/1.4035508
11.
Rehder
,
H.-J.
,
Pahs
,
A.
,
Bittner
,
M.
, and
Kocian
,
F.
,
2017
, “
Next Generation Turbine Testing at DLR
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
,
ASME
Paper No. GT2017-64409.
12.
Wolf
,
T.
,
Lehmann
,
L.
,
Willer
,
L.
,
Pahs
,
A.
,
Rössling
,
M.
, and
Dorn
,
L.
,
2017
, “
InterTurb: High-Pressure Turbine Rig for the Investigation of Combustor-Turbine Interaction
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
ASME
paper No. GT2017-64153.
13.
Erhard
,
G.
, and
Gehrer
,
A.
,
2000
, “
Design and Construction of a Transonic Test-Turbine Facility
,”
ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11
,
ASME
Paper No. GT2000-480.
14.
Neumayer
,
F.
,
Kulhanek
,
G.
,
Pirker
,
H.
,
Jericha
,
H.
,
Seyr
,
A.
, and
Sanz
,
W.
,
2000
, “
Operational Behavior of a Complex Transonic Test Turbine Facility
,”
ASME Turbo Expo 2001: Power for Land, Sea, and Air
,
New Orleans, LA
,
June 4–7
,
ASME
Paper No. GT2000-489.
15.
Hubinka
,
J.
,
Santner
,
C.
,
Paradiso
,
B.
,
Malzacher
,
F.
,
Göttlich
,
E.
, and
Heitmeir
,
F.
,
2009
, “
Design and Construction of a Two Shaft Test Turbine for Investigation of Mid Turbine Frame Flows
,”
ISABE 2009
, Jan, pp.
7
11
, ISABE Paper No. ISABE-2009-1293.
16.
Steiner
,
M.
,
Zerobin
,
S.
,
Bauinger
,
S.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
Development and Commissioning of a Purge Flow System in a Two Spool Test Facility
,”
ETC12, Stockholm
,
Sweden
,
Apr. 3–7
, ETC Paper No. ETC2017-115.
17.
Faustmann
,
C.
, and
Göttlich
,
E.
,
2014
, “
Aerodynamics and Acoustics of Turning Mid Turbine Frames in a Two-Shaft Test Turbine
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
,
ASME
Paper No. GT2014-25568.
18.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
. 10.1115/1.3262163
19.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
(
3
), pp.
435
445
. 10.1115/1.2929430
20.
Arnone
,
A.
, and
Pacciani
,
A.
,
1996
, “
Rotor-Stator Interaction Analysis Using the Navier-Stokes Equations and a Multigrid Method
,”
ASME J. Turbomach.
,
118
(
4
), pp.
679
689
. 10.1115/1.2840923
21.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Progr. Aero. Sci.
,
47
(
4
), pp.
249
279
. 10.1016/j.paerosci.2011.01.002
22.
Steiner
,
M.
,
Peters
,
A.
,
Gatti
,
G.
,
Zscherp
,
K.
,
Engel
,
K.
,
Sterzinger
,
P.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2018
, “
On Clean Inflow Testing for Intermediate Turbine Ducts
,”
Proceedings of Montreal 2018 Global Power and Propulsion Forum
,
Montreal, Canada
,
May 7–9
. GPPS paper No. GPPS-NA-2018-128.
You do not currently have access to this content.