Abstract

This paper presents the unsteady flow interactions between an engine-representative high-pressure turbine (HPT) and low-pressure turbine (LPT) stage, connected by a turbine center frame (TCF) duct with nonturning struts. The setup was tested at the high-speed two-spool test turbine facility at the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology and includes relevant purge and turbine rotor tip leakage flows. Due to the complexity of such a test, the unsteady component interactions in an HPT–TCF–LPT module have not received much attention in the past and require additional analysis to determine new approaches for further performance improvements on the system level. The flow downstream of an HPT is highly unsteady and dominated by stator–rotor interactions, which affect the flow behavior through the downstream TCF and LPT. To capture the unsteady flow structures, time-resolved aerodynamic measurements were carried out with a fast-response aerodynamic pressure probe (FRAPP) at three different measurement planes. In this paper, the time-resolved and phase-averaged flow fields with respect to the HPT and LPT trigger are studied. Since the two rotors are uncorrelated, the applied method allows the identification of the flow structures induced by either of them. Upstream of the LPT stage, the HPT flow structures evolving through the TCF duct dominate the flow fields. Downstream of the LPT stage, the flow is affected by both the HPT and the LPT secondary flow structures. The interactions between the various stator rows and the two rotors are detected by means of time-space plots and modal decomposition. To describe the fluctuations induced by both rotors, particularly the rotor–rotor interaction, the rotor synchronic averaging (RSA) is used to analyze the flow field downstream of the LPT. This paper highlights the need to account for the HPT-induced unsteady mechanisms in addition to the LPT flow structures and the interaction of both to arrive at improved LPT designs.

References

1.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Experimental Study of Tip Clearance Losses and Noise in Axial Turbomachines and Their Reduction
,”
ASME J. Turbomach.
,
119
(
3
), pp.
460
471
. 10.1115/1.2841145
2.
Dominy
,
R. G.
,
Kirkham
,
D. A.
, and
Smith
,
A. D.
,
1998
, “
Flow Development Through Interturbine Diffusers
,”
ASME J. Turbomach.
,
120
(
2
), pp.
298
304
. 10.1115/1.2841406
3.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Progr. Aero. Sci.
,
47
(
4
), pp.
249
279
. 10.1016/j.paerosci.2011.01.002
4.
Praisner
,
T.
,
Grover
,
E.
,
Mocanu
,
R.
,
Jurek
,
R.
, and
Gacek
,
R.
,
2013
, “
Predictions of Unsteady Interactions Between Closely Coupled High Pressure-and Low Pressure-Turbines With Co-and Counterrotation
,”
ASME J. Turbomach.
,
135
(
6
), p.
061008
. 10.1115/1.4024635
5.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
. 10.1016/j.paerosci.2010.04.001
6.
Tucker
,
P.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 1—Progress and Challenges
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
522
545
. 10.1016/j.paerosci.2011.06.004
7.
Miller
,
R.
,
Moss
,
R.
,
Ainsworth
,
R.
, and
Harvey
,
N.
,
2004
, “
The Effect of an Upstream Turbine on a Low-Aspect Ratio Vane
,”
Vienna, Austria
,
June 14–17
, pp.
1417
1428
,
ASME
Paper No. GT2004-54017.
8.
Davis
,
R.
,
Yao
,
J.
,
Clark
,
J.
,
Stetson
,
G.
,
Alonso
,
J.
,
Jameson
,
A.
,
Haldeman
,
C.
, and
Dunn
,
M.
,
2004
, “
Unsteady Interaction Between a Transonic Turbine Stage and Downstream Components
,”
Int. J. Rotating Mach.
,
10
(
6
), p.
11
. 10.1155/S1023621X04000491
9.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
,
Gier
,
J.
, and
Engel
,
K.
,
2013
, “
Unsteady Rotor Hub Passage Vortex Behavior in the Presence of Purge Flow in an Axial Low Pressure Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051022
. 10.1115/1.4007837
10.
Lengani
,
D.
,
Selic
,
T.
,
Spataro
,
R.
,
Marn
,
A.
, and
Göttlich
,
E.
,
2012
, “
Analysis of the Unsteady Flow Field in Turbines by Means of Modal Decomposition
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15
,
ASME
Paper No. GT2012-68582.
11.
Zerobin
,
S.
,
Bauinger
,
S.
,
Marn
,
A.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
The Unsteady Flow Field of a Purged High Pressure Turbine Based on Mode Detection
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
,
ASME
Paper No. GT2017-63619.
12.
Zerobin
,
S.
,
Perters
,
A.
,
Marn
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2018
, “
Impact of Purge Flows on the Unsteady HPT Stator-Rotor Interaction
,
Proceedings of GPPS Forum 18
,
Zurich
,
Jan. 10–12
, Paper No. GPPS-2018-0026.
13.
Dellacasagrande
,
M.
,
Sterzinger
,
P.
,
Zerobin
,
S.
,
Merli
,
F.
,
Wiesinger
,
L.
,
Peters
,
A.
,
Maini
,
G.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2019
, “
Unsteady Flow Interactions Between a High- and Low-Pressure Turbine: Part 2—Rotor-Synchronic Averaging and Proper Orthogonal Decomposition of the Unsteady Flow Fields
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
,
ASME
Paper No. GT2019-90824.
14.
Lengani
,
D.
,
Santner
,
C.
,
Spataro
,
R.
, and
Göttlich
,
E.
,
2012
, “
Analysis Tools for the Unsteady Interactions in a Counter-Rotating Two-Spool Turbine Rig
,”
Exp. Therm. Fluid. Sci.
,
42
, pp.
248
257
. 10.1016/j.expthermflusci.2012.05.010
15.
Sterzinger
,
P.
,
Zerobin
,
S.
,
Merli
,
F.
,
Wiesinger
,
L.
,
Dellacasagrande
,
M.
,
Peters
,
A.
,
Maini
,
G.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2019
, “
Impact of Varying High- and Low-Pressure Turbine Purge Flows on a Turbine Center Frame and Low-Pressure Turbine System
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
,
ASME
Paper No. GT2019-90795.
16.
Hubinka
,
J.
,
Paradiso
,
B.
,
Santner
,
C.
,
Pirker
,
H.-P.
, and
Göttlich
,
E.
,
2011
, “
Design and Operation of a Two Spool High Pressure Test Turbine Facility
,”
European Turbomachinery Conference
,
Istanbul, Turkey
,
Jan.
, pp.
1531
1540
.
17.
Kupferschmied
,
P.
,
Köppel
,
P.
,
Gizzi
,
W.
,
Roduner
,
C.
, and
Gyarmathy
,
G.
,
2000
, “
Time-Resolved Flow Measurements With Fast-Response Aerodynamic Probes in Turbomachines
,”
Meas. Sci. Technol.
,
11
(
7
), p.
1036
. 10.1088/0957-0233/11/7/318
18.
Persico
,
G.
,
Gaetani
,
P.
, and
Guardone
,
A.
,
2005
, “
Design and Analysis of New Concept Fast-Response Pressure Probes
,”
Meas. Sci. Technol.
,
16
(
9
), pp.
1741
1750
.
19.
Bauinger
,
S.
,
Behre
,
S.
,
Lengani
,
D.
,
Guendogdu
,
Y.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
On the Turbulence Measurements and Analyses in a Two-Stage Two-Spool Turbine Rig
,”
ASME J. Turbomach.
,
139
(
7
), p.
071008
. 10.1115/1.4035508
20.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1969
, “
Axial Flow Compressor Noise Studies
,”
Technical Report, SAE Technical Paper
, SAE Transaction, vol.
70
, pp.
309
322
.
21.
Lengani
,
D.
,
Paradiso
,
B.
, and
Marn
,
A.
,
2012
, “
A Method for the Determination of Turbulence Intensity by Means of a Fast Response Pressure Probe and Its Application in a LP Turbine
,”
J. Thermal Sci.
,
21
(
1
), pp.
21
31
. 10.1007/s11630-012-0515-8
22.
Lengani
,
D.
,
Paradiso
,
B.
,
Marn
,
A.
, and
Göttlich
,
E.
,
2012
, “
Identification of Spinning Mode in the Unsteady Flow Field of a Low Pressure Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051032
. 10.1115/1.4004875
23.
Zerobin
,
S.
,
Peters
,
A.
,
Bauinger
,
S.
,
Ramesh
,
A.
,
Steiner
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2018
, “
Aerodynamic Performance of Turbine Center Frames With Purge Flows Part I: The Influence of Turbine Purge Flow Rates
,”
ASME J. Turbomach.
,
140
(
6
), p.
061009
. 10.1115/1.4039362
You do not currently have access to this content.