Abstract

This paper presents an efficient method of approximating unsteady flows using a block-wise discrete spatial Fourier series for the modeling of three-dimensional non-axisymmetric flows without making any hypothesis about its temporal periodicity. The method aims at capturing the long-wavelength flow patterns that are present in many unsteady problems of industrial interest, such as compressor stability, with a drastic reduction in computational resources. The method is intended to be used to compute flows exhibiting large-scale instabilities and where the fundamental frequency of the problem is not known beforehand. The approach discretizes the domain using a finite number of blocks or passages, where the flow variables at the supposedly periodic boundaries are continuously updated using the spatial Fourier coefficients of a uniformly spaced set of reduced-passage domains. The NASA rotor 67 under the effect of distorted inflow conditions has been used as verification case to demonstrate the effectiveness and viability of the method. The comparison between the passage-spectral method and the full-annulus solution shows that sound solutions can be obtained with a low number of harmonics. The new method has also been applied to investigate the rotating stall inception of the NASA rotor 67 for distorted inlet flows near stall operating conditions. The method is shown to accurately reproduce the full-annulus solution with a few spatial harmonics, capturing the characteristic features of the complex flow induced by the tip leakage vortex breakdown. The computational cost in this application has been reduced by a factor of between three and seven. This number heavily depends on the ratio between the number of retained harmonics to the number of blades.

References

1.
Hall
,
K. C.
, and
Lorence
,
C. B.
,
1993
, “
Calculation of Three-dimensional Unsteady Flows in Turbomachinery Using the Linearized Harmonic Euler Equations
,”
ASME J. Turbomach.
,
115
(
4
), pp.
800
809
. 10.1115/1.2929318
2.
Corral
,
R.
,
Escribano
,
A.
,
Gisbert
,
F.
,
Serrano
,
A.
, and
Vasco
,
C.
,
2003
, “
Validation of a Linear Multigrid Accelerated Unstructured Navier-Stokes Solver for the Computation of Turbine Blades on Hybrid Grids
,”
AIAA Paper
,
3326
(
9
). 10.2514/6.2003-3326
3.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
. 10.2514/2.328
4.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
. 10.2514/2.1754
5.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerospace Sci.
,
46
(
8
), pp.
329
341
. 10.1016/j.paerosci.2010.04.001
6.
Dowell
,
E. H.
, and
Hall
,
K. C.
,
2001
, “
Modeling of Fluid-structure Interaction
,”
Ann. Rev. Fluid Mech.
,
33
(
1
), pp.
445
490
. 10.1146/annurev.fluid.33.1.445
7.
Gopinath
,
A.
, and
Jameson
,
A.
,
2006
, “
Application of the Time Spectral Method to Periodic Unsteady Vortex Shedding
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 9–12
, p.
449
.
8.
He
,
L.
,
2006
, “
Fourier Modeling of Steady and Unsteady Nonaxisymmetrical Flows
,”
J. Propul. Power.
,
22
(
1
), pp.
197
201
. 10.2514/1.15701
9.
He
,
L.
,
2011
, “
Efficient Computational Model for Nonaxisymmetric Flow and Heat Transfer in Rotating Cavity
,”
ASME J. Turbomach.
,
133
(
2
), p.
021018
. 10.1115/1.4000551
10.
Stapelfeldt
,
S. C.
, and
Di Mare
,
L.
,
2015
, “
Reduced Passage Method for Multirow Forced Response Computations
,”
AIAA J.
,
53
(
10
), pp.
3049
3062
. 10.2514/1.J053888
11.
Biesiadny
,
T. J.
,
Braithwaite
,
W. M.
,
Soeder
,
R. H.
, and
Abdelwahab
,
M.
,
1986
, “Summary of Investigations of Engine Response to Distorted Inlet Conditions”.
NASA Technical Memo No. 87317
,
Lewis Research Center
,
Cleveland, OH
.
12.
Gunn
,
E. J.
,
Tooze
,
S. E.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2013
, “
An Experimental Study of Loss Sources in a Fan Operating With Continuous Inlet Stagnation Pressure Distortion
,”
ASME J. Turbomach.
,
135
(
5
), p.
051002
. 10.1115/1.4007835
13.
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2019
, “
Improving the Flutter Margin of An Unstable Fan Blade
,”
ASME J. Turbomach.
,
141
(
7
), p.
071006
. 10.1115/1.4042645
14.
Im
,
H.-S.
,
Chen
,
X.
, and
Zha
,
G.-C.
,
2010
, “
Detached Eddy Simulation of Unsteady Stall Flows of a Full Annulus Transonic Rotor
,”
Proceeding of ASME. GT2010, Volume 7: Turbomachinery, Parts A, B, and C, presented at ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, American Society of Mechanical Engineers, pp.
2627
2642
.
15.
Lee
,
K.-B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2017
, “
Numerical Study on Aeroelastic Instability for a Low-Speed Fan
,”
ASME J. Turbomach.
,
139
(
7
), p.
071004
. 10.1115/1.4035569
16.
Soderquist
,
D. R.
,
Gorrell
,
S. E.
, and
List
,
M. G.
,
2018
, “
Radial Variation in Distortion Transfer and Generation Through a Highly Loaded Fan Stage
,”
Proceeding of ASME.GT2019, Volume 2A: Turbomachinery at ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
, American Society of Mechanical Engineers, p.
V02AT39A045
.
17.
Zhang
,
W.
, and
Vahdati
,
M.
,
2018
, “
A Parametric Study of the Effects of Inlet Distortion on Fan Aerodynamic Stability
,”
ASME J. Turbomach.
,
141
(
1
), p.
11
. 10.1115/1.4041376
18.
He
,
L.
,
1992
, “
Method of Simulating Unsteady Turbomachinery Flows With Multiple Perturbations
,”
AIAA J.
,
30
(
11
), pp.
2730
2735
. 10.2514/3.11291
19.
Li
,
H.
, and
He
,
L.
,
2002
, “
Single-Passage Analysis of Unsteady Flows Around Vibrating Blades of a Transonic Fan Under Inlet Distortion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
285
292
. 10.1115/1.1450567
20.
Carnevale
,
M.
,
Wang
,
F.
,
Parry
,
A. B.
,
Green
,
J. S.
, and
di Mare
,
L.
,
2018
, “
Fan Similarity Model for the Fan-Intake Interaction Problem
,”
ASME J. Eng. Gas. Turbines. Power.
,
140
(
5
), p.
051202
. 10.1115/1.4038247
21.
Burgos
,
M. A.
,
Contreras
,
J.
, and
Corral
,
R.
,
2011
, “
Efficient Edge-Based Rotor/Stator Interaction Method
,”
AIAA J.
,
49
(
1
), pp.
19
31
. 10.2514/1.44512
22.
Corral
,
R.
,
Gisbert
,
F.
, and
Pueblas
,
J.
,
2017
. “
Efficient Execution of a Parallel Edged-Based Navier–Stokes Solver on Graphics Processing Units
,”
Int. J. Comp. Fluid Dynamics
,
31
(
2
), pp.
1
16
.
23.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid, With Applications to Unsteady Flows Past Airfoils and Wings
,”
10th Computational Fluid Dynamics Conference
,
Honolulu, HI
,
June 24–26
, AIAA Paper 1991-1596, p.
1596
. https://doi.org/10.2514/6.1991-1596
24.
Burgos
,
M. A.
,
Chia
,
J. M.
,
Corral
,
R.
, and
López
,
C.
,
2010
, “
Rapid Meshing of Turbomachinery Rows Using Semi-Unstructured Multi-Block Conformal Grids
,”
Eng. Comput.
,
26
(
4
), pp.
351
362
. 10.1007/s00366-009-0169-7
25.
Zhang
,
W.
, and
Vahdati
,
M.
,
2017
, “
Influence of the Inlet Distortion on Fan Stall Margin At Different Rotational Speed
,”
Proceedings of Shanghai 2017, Global Power and Propulsion Forum
,
Oct. 30–Nov. 1
, Paper No. GPPS-2017-0207, Vol.
207
.
26.
Lee
,
K.-B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2019
, “
Effects of Inlet Disturbances on Fan Stability
,”
ASME J. Eng. Gas. Turbines. Power.
,
141
(
5
), p.
051014
. 10.1115/1.4042204
27.
Hall
,
D.
,
Greitzer
,
E.
, and
Tan
,
C.
,
2017
, “
Analysis of Fan Stage Conceptual Design Attributes for Boundary Layer Ingestion
,”
ASME J. Turbomach.
,
139
(
7
), p.
071012
. 10.1115/1.4035631
28.
Lee
,
K.-B.
,
Dodds
,
J.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan - Part II: Unsteady Analysis
,”
ASME J. Turbomach.
,
140
(
5
), p.
051009
. 10.1115/1.4039052
29.
Romera
,
D.
, and
Corral
,
R.
,
2020
, “
Nonlinear Stability Analysis of a Generic Fan with Distorted Inflow using Passage-Spectral Method
.”
ASME Turbo Expo 2020, Volume 2C: Turbomachinery of Turbo Expo: Power for Land, Sea, and Air
.
You do not currently have access to this content.