Abstract

The efficiency of modern axial turbomachinery is strongly driven by the secondary flows within the vane or blade passages. The secondary flows are characterized by a complex pattern of vortical structures that origin, interact, and dissipate along the turbine gas path. The endwall flows are responsible for the generation of a significant part of the overall turbine loss because of the dissipation of secondary kinetic energy and mixing out of nonuniform momentum flows. The understanding and analysis of secondary flows requires a reliable vortex identification technique to predict and analyze the impact of specific turbine designs on the turbine performance. However, the literature shows a remarkable lack of general methods to detect vortices and to determine the location of their cores and to quantify their strength. This paper presents a novel technique for the identification of vortical structures in a general 3D flow field. The method operates on the local flow field, and it is based on a triple decomposition of motion proposed by Kolář. In contrast to a decomposition of velocity gradient into the strain and vorticity tensors, this method considers a third, pure shear component. The subtraction of the pure shear tensor from the velocity gradient remedies the inherent flaw of vorticity-based techniques, which cannot distinguish between rigid rotation and shear. The triple decomposition of motion serves to obtain a 3D field of residual vorticity whose magnitude is used to define vortex regions. The present method allows to locate automatically the core of each vortex, to quantify its strength, and to determine the vortex bounding surface. The output may be used to visualize the turbine vortical structures for the purpose of interpreting the complex three-dimensional viscous flow field and to highlight any case-to-case variations by quantifying the vortex strength and location. The vortex identification method is applied to a high-pressure turbine with three optimized blade tip geometries. The 3D flow field is obtained by computational fluid dynamics (CFD) computations performed with Numeca FINE/Open. The computational model uses steady-state Reynolds-averaged Navier–Stokes (RANS) equations closed by the Spalart-Allmaras turbulence model. Although developed for turbomachinery applications, the vortex identification method proposed in this work is of general applicability to any three-dimensional flow field.

References

1.
Coull
,
J. D.
,
2017
, “
Endwall Loss in Turbine Cascades
,”
J. Turbomach.
,
139
(
8
). 10.1115/1.4035663
2.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1986
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
Proceedings of the ASME 1986 International Gas Turbine Conference and Exhibit, Vol. 1: Turbomachinery
,
Dusseldorf, Germany
,
June 8–12
, p.
V001T01A098
.
3.
Langston
,
L.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
. 10.1111/j.1749-6632.2001.tb05839.x
4.
Kolář
,
V.
,
2011
, “
Brief Notes on Vortex Identification
,”
Proceedings of the 8th WSEAS International Conference on Fluid Mechanics, 8th WSEAS International Conference on Heat and Mass Transfer
,
Puerto Morelos, Mexico
,
Jan. 29–31
, pp.
23
28
.
5.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
,
1990
, “
A General Classification of Three-Dimensional Flow Fields
,”
Phys. Fluids A.
,
2
(
5
), pp.
765
777
. 10.1063/1.857730
6.
Robinson
,
S. K.
,
1991
, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
601
639
. 10.1146/annurev.fl.23.010191.003125
7.
Roth
,
M.
,
2000
, “
Automatic Extraction of Vortex Core Lines and Other Line-Type Features for Scientific Visualization
,”
Ph.D. thesis
,
ETH Zurich. Diss. Technische Wissenschaften ETH
Zürich
,
Report No. 13673
.
8.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the Summer Program 1988
,
Stanford University, CA
,
December
, pp.
193
208
.
9.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
. 10.1017/S0022112095000462
10.
Zabusky
,
N. J.
,
Boratav
,
O. N.
,
Pelz
,
R. B.
,
Gao
,
M.
,
Silver
,
D.
, and
Cooper
,
S. P.
,
1991
, “
Emergence of Coherent Patterns of Vortex Stretching During Reconnection: A Scattering Paradigm
,”
Phys. Rev. Lett.
,
67
(
18
), pp.
2469
2472
. 10.1103/PhysRevLett.67.2469
11.
Ducci
,
A.
, and
Yianneskis
,
M.
,
2007
, “
Vortex Identification Methodology for Feed Insertion Guidance in Fluid Mixing Processes
,”
Chem. Eng. Res. Des.
,
85
(
5
), pp.
543
550
. 10.1205/cherd06192
12.
Zhang
,
S.
, and
Choudhury
,
D.
,
2006
, “
Eigen Helicity Density: A New Vortex Identification Scheme and Its Application in Accelerated Inhomogeneous Flows
,”
Phys. Fluids
,
18
(
5
), p.
058104
. 10.1063/1.2187071
13.
Kolář
,
V.
,
2009
, “
Compressibility Effect in Vortex Identification
,”
AIAA J.
,
47
(
2
), pp.
473
475
. 10.2514/1.40131
14.
Müller
,
K.
,
Rist
,
U.
, and
Wagner
,
S.
,
1998
, “
Enhanced Visualization of Late-Stage Transitional Structures using Vortex Identification and Automatic Feature Extraction
,”
ECCOMAS '98: 4th ECCOMAS Computational Fluid Dynamics Conference
,
Athens, Greece
,
Sept. 7–11
.
15.
Globus
,
A.
,
Levit
,
C.
, and
Lasinski
,
T.
,
1991
, “
A Tool for Visualizing the Topology of Three-Dimensional Vector Fields
,”
Proceedings of the 2nd Conference on Visualization '91
,
San Diego, CA
,
Oct. 22–25
,
IEEE Computer Society Press
, pp.
33
40
.
16.
Levy
,
Y.
,
Degani
,
D.
, and
Seginer
,
A.
,
1990
, “
Graphical Visualization of Vortical Flows by Means of Helicity
,”
AIAA J.
,
28
(
8
), pp.
1347
1352
. 10.2514/3.25224
17.
Singer
,
B. A.
, and
Banks
,
D. C.
,
1994
,
A Predictor-Corrector Scheme for Vortex Identification
,
Institute for Computer Applications in Science and Engineering Hampton, VA, Report No. 94-11
.
18.
Stegmaier
,
S.
,
Rist
,
U.
, and
Ertl
,
T.
,
2005
, “
Opening the Can of Worms: An Exploration Tool for Vortical Flows
,”
VIS '05. IEEE Visualization
,
Minneapolis, MN
,
Oct. 23–28
, pp.
463
470
.
19.
Sujudi
,
D.
, and
Haimes
,
R.
,
1995
, “
Identification of Swirling Flow in 3-D Vector Fields
,”
12th Computational Fluid Dynamics Conference
,
San Diego, CA
,
June 19–22
.
20.
Roth
,
M.
, and
Peikert
,
R.
,
1998
, “
A Higher–Order Method for Finding Vortex Core Lines
,”
Proceedings Visualization '98
,
Research Triangle Park, NC
,
Oct. 18–23
, pp.
143
150
.
21.
Strawn
,
R. C.
,
Kenwright
,
D. N.
, and
Ahmad
,
J.
,
1999
, “
Computer Visualization of Vortex Wake Systems
,”
AIAA J.
,
37
(
4
), pp.
511
512
. 10.2514/2.744
22.
Kolář
,
V.
,
2007
, “
Vortex Identification: New Requirements and Limitations
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
638
652
. 10.1016/j.ijheatfluidflow.2007.03.004
23.
Morajkar
,
R. R.
,
Klomparens
,
R. L.
,
Eagle
,
W. E.
,
Driscoll
,
J. F.
,
Gamba
,
M.
, and
Benek
,
J. A.
,
2016
, “
Relationship Between Intermittent Separation and Vortex Structure in a Three-Dimensional Shock/Boundary-Layer Interaction
,”
AIAA J.
,
54
(
6
), pp.
1862
1880
. 10.2514/1.J053905
24.
Morajkar
,
R. R.
, and
Gamba
,
M.
,
2016
, “
Turbulence Characteristics of Supersonic Corner Flows in a Low Aspect Ratio Rectangular Channel
,”
54th AIAA Aerospace Sciences Meeting
,
San Diego, CA
,
Jan. 4–8
.
25.
Wang
,
F.
,
Li
,
W.
, and
Wang
,
S.
,
2016
, “
Polar Cyclone Identification From 4D Climate Data in a Knowledge-Driven Visualization System
,”
Climate
,
4
(
3
), p.
43
. 10.3390/cli4030043
26.
Pátý
,
M.
,
Cernat
,
B.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes: Part II - Tip Flow Analysis and Loss Mechanisms
,”
J. Turbomach.
,
141
(
1
).
27.
Cernat
,
B.
,
Pátý
,
M.
,
Maesschalck
,
C. D.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes: Part I—Turbine Rainbow Rotor Testing and CFD Methods
,”
J. Turbomach.
,
141
(
1
).
28.
Maesschalck
,
C. D.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2016
, “
Heterogeneous Optimization Strategies for Carved and Squealer-Like Turbine Blade Tips
,”
J. Turbomach.
,
138
(
12
), p.
121011
. 10.1115/1.4033975
29.
Cernat
,
B. C.
,
Paty
,
M.
, and
Lavagnoli
,
S.
,
2018
, “
On the Unsteady Aerodynamics of a High-Speed Turbine With Squealer Blade Tips
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
.
30.
Pátý
,
M.
, and
Lavagnoli
,
S.
,
2018
, “
Accuracy of RANS CFD Methods for Design Optimization of Turbine Blade Tip Geometries
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
.
31.
Jeong
,
J.
,
Hussain
,
F.
,
Schoppa
,
W.
, and
Kim
,
J.
,
1997
, “
Coherent Structures Near the Wall in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
332
, pp.
185
214
. 10.1017/S0022112096003965
32.
Kolář
,
V.
,
2010
, “
A Note on Integral Vortex Strength
,”
J. Hydrol. Hydromechanics
,
58
(
1
), pp.
23
28
.
33.
Koo
,
B. K.
,
Chu
,
C. W.
,
Kim
,
J. C.
, and
Choi
,
Y. K.
,
2004
, “
Shrink-Wrapped Boundary Face Algorithm for Surface Reconstruction From Unorganized 3D Points
,”
WSEAS Trans. Circuits Syst.
,
3
(
10
), pp.
2177
2181
.
34.
Zou
,
Z.
,
Shao
,
F.
,
Li
,
Y.
,
Zhang
,
W.
, and
Berglund
,
A.
,
2017
, “
Dominant Flow Structure in the Squealer Tip Gap and Its Impact on Turbine Aerodynamic Performance
,”
Energy
,
138
, pp.
167
184
. 10.1016/j.energy.2017.07.047
35.
Mischo
,
B.
,
Behr
,
T.
, and
Abhari
,
R. S.
,
2008
, “
Flow Physics and Profiling of Recessed Blade Tips: Impact on Performance and Heat Load
,”
J. Turbomachi.
,
130
(
2
). 10.1115/1.2775485
36.
Wang
,
H.-P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
J. Turbomachi.
,
119
(
1
), pp.
1
8
. 10.1115/1.2841006
37.
Sieverding
,
C.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
. 10.1115/1.3239704
You do not currently have access to this content.