Abstract

Effective coolant schemes are required for providing cooling to the first-stage stator vanes of gas turbines. To correctly predict coolant performance on the endwall and vane surfaces, these coolant schemes should also consider the effects of coolant streams introduced upstream in the combustor section of a gas turbine engine. This two-part paper presents measurements taken on a first-stage nozzle guide vane cascade that includes combustor coolant injection. The first part of this paper explains how coolant transport and coolant-mainstream interaction in the vane passage is affected by changing the combustor coolant and endwall film coolant flowrates. This paper explains how those flows affect the coolant effectiveness on the endwall and vane surfaces. Part one showed that a significant amount of coolant injected upstream of the endwall is present along the pressure surface of the vanes as well as over the endwall. Part two shows effectiveness measurement results taken in this study on the endwall and pressure and suction surfaces of the vanes. Sustained endwall coolant effectiveness is observed along the whole passage for all cases. It is uniform in the pitch-wise direction. Combustor coolant flow significantly affects cooling performance even near the trailing edge. The modified flowfield results in the pressure surface being cooled more effectively than the suction surface. While the effectiveness distribution on the pressure surface varies with combustor and film coolant flowrates, the distribution along the suction surface remains largely unchanged.

References

1.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
J. Heat Trans.
,
110
(
4a
), pp.
862
869
. 10.1115/1.3250586
2.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
. 10.1115/1.2841006
3.
Ewen
,
J. S.
,
Huber
,
F. W.
, and
Mitchell
,
J. P.
,
1973
, “
Investigation of the Aerodynamic Performance of Small Axial Turbines
,”
J. Eng. Power
,
95
(
4
), pp.
326
332
. 10.1115/1.3445739
4.
Morris
,
A. W. H.
, and
Hoare
,
R. G.
,
1975
, “
Secondary Loss Measurements in a Cascade of Turbine Blades With Meridional Wall Profiling
,” ASME, Paper No. 75-WA/GT-13.
5.
Kopper
,
F. C.
,
Milanot
,
R.
, and
Vancot
,
M.
,
1981
, “
Experimental Investigation of Endwall Profiling in a Turbine Vane Cascade
,”
AIAA J.
,
19
(
8
), pp.
1033
1040
. 10.2514/3.51032
6.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
J. Heat Trans.
,
96
(
4
), pp.
524
529
. 10.1115/1.3450239
7.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
,
112
(
3
), pp.
488
496
. 10.1115/1.2927684
8.
Jabbari
,
M. Y.
,
Marston
,
K. C.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1996
, “
Film Cooling of the Gas Turbine Endwall by Discrete-Hole Injection
,”
ASME J. Turbomach.
,
118
(
2
), pp.
278
284
. 10.1115/1.2836637
9.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2012
, “
Effects of Orientation and Position of the Combustor-Turbine Interface on the Cooling of a Vane Endwall
,”
ASME J. Turbomach.
,
134
(
6
), p.
061019
. 10.1115/1.4004817
10.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part I—Flowfield Measurements
,”
Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air. Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration, V003T01A007
,
Munich, Germany
,
May 8–11
, http://dx.doi.org/10.1115/2000-GT-0199
11.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part II—Flowfield Measurements
,”
Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air. Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration, V003T01A008
,
Munich, Germany
,
May 8–11
. http://dx.doi.org/10.1115/2000-GT-0200
12.
Ornano
,
F.
, and
Povey
,
T.
,
2017
, “
Experimental and Computational Study of the Effect of Momentum-Flux Ratio on High Pressure NGV Endwall Cooling Systems
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 5C: Heat Transfer, V05CT19A017
,
Charlotte, NC
,
June 26–30
. http://dx.doi.org/10.1115/GT2017-64229
13.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2020
, “
Aero-thermal Aspects of Film Cooled Nozzle Guide Vane Endwalls—Part 1: Aerodynamics
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Volume 7B: Heat Transfer, V07BT12A063
,
Virtual, Online
,
Sept. 21–25
, http://dx.doi.org/10.1115/GT2020-15926
14.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2020
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwalls—Part 2: Thermal Measurements
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Volume 7B: Heat Transfer, V07BT12A041
,
Virtual, Online
,
Sept. 21–25
. http://dx.doi.org/10.1115/GT2020-15076
15.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2020
, “
Effects of Endwall Film Coolant Flow Rate on Secondary Flows and Coolant Mixing in a First Stage Nozzle Guide Vane
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Volume 7B: Heat Transfer, V07BT12A060
,
Virtual, Online
,
Sep. 21–25
. http://dx.doi.org/10.1115/GT2020-15746
16.
Zhang
,
L.
,
Yin
,
J.
,
Liu
,
K.
, and
Moon
,
H.-K.
,
2015
, “
Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Volume 5B: Heat Transfer
,
Montreal, Quebec
,
June 15–19
, GT2015-42541.
17.
Li
,
S.-J.
,
Yang
,
S.-F.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2016
, “
Turbine Blade Surface Phantom Cooling From Upstream Nozzle Trailing-Edge Ejection
,”
J. Thermophys. Heat Transfer
,
30
(
4
), pp.
770
781
. 10.2514/1.T4796
18.
Du
,
K.
,
Li
,
Z.
,
Li
,
J.
, and
Sunden
,
B.
,
2017
, “
Influence of the Upstream Slot Geometry on the Endwall Cooling and Phantom Cooling of Vane Suction Side Surface
,”
Appl. Therm. Eng.
,
121
, pp.
688
700
. 10.1016/j.applthermaleng.2017.04.143
19.
Du
,
K.
,
Song
,
L.
,
Li
,
J.
, and
Sunden
,
B.
,
2017
, “
Effects of the Mainstream Turbulence Intensity and Slot Injection Angle on the Endwall Cooling and Phantom Cooling of the Vane Suction Side Surface
,”
Int. J. Heat Mass Transfer
,
112
, pp.
427
440
. 10.1016/j.ijheatmasstransfer.2017.05.010
20.
Erickson
,
R. D.
,
2010
, “
Experimental Investigation of Disc Cavity Leakage Flow and Hub Endwall Contouring in a Linear Rotor Cascade
,”
M.S. thesis
,
University of Minnesota
,
Minneapolis, MN
.
21.
Nawathe
,
K. P.
,
2019
, “
Experiments on Film Cooling of Gas Turbine Vane Passage Surfaces: The Effects of Various Distributions of Combustor Coolant and Endwall Injection Coolant
,”
M.S. thesis
,
University of Minnesota
,
Minneapolis, MN
.
22.
Alqefl
,
M. H.
,
2019
, “
Aero-thermal Aspects of Endwall Cooling Flows in a Gas Turbine Nozzle Guide Vane
,”
Ph.D. thesis
,
University of Minnesota
,
Minneapolis, MN
.
23.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
. 10.1115/1.2927894
You do not currently have access to this content.