Abstract

The turbulence model in Reynolds-averaged Navier–Stokes simulations is crucial in the prediction of the compressor stall margin. In this paper, parametric uncertainty of the Spalart–Allmaras turbulence model in predicting two-dimensional airfoil stall and three-dimensional compressor stall has been investigated using a metamodel-based Monte Carlo method. The model coefficients are represented by uniform distributions within physically acceptable ranges. The quantities of interest include characteristic curves, stall limit, blockage size, and turbulence magnitude. Results show that the characteristics can be well predicted in the stable flow range, but the inaccuracy and the uncertainty increase when approaching stall. The stall point of the airfoil can be enveloped by the parametric uncertainty range, but that of the rotor cannot. Sensitivity analyses identified the crucial model coefficients to be source related, where an increase in the predicted turbulence level will delay the onset of stall. Such results imply that implementing new turbulence production terms with respect to the rotor-specific flow features is likely to improve the model accuracy. The findings in this paper not only provide engineering rules of thumb for the model users but also guide the future implementation of a data-driven turbulence model for the model developers.

References

1.
Spalart
,
P.
, and
Allmaras
,
S.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerospatiale
,
1
, pp.
5
21
.
2.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p
011001
.
3.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
51
, pp.
357
377
.
4.
Dunn
,
M. C.
,
Shotorban
,
B.
, and
Frendi
,
A.
,
2011
, “
Uncertainty Quantification of Turbulence Model Coefficients Via Latin Hypercube Sampling Method
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041402
.
5.
Schaefer
,
J.
,
Hosder
,
S.
,
West
,
T.
,
Rumsey
,
C.
,
Carlson
,
J. R.
, and
Kleb
,
W.
,
2016
, “
Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows
,”
AIAA J.
,
55
(
1
), pp.
195
213
.
6.
Schaefer
,
J.
,
Cary
,
A.
,
Mani
,
M.
,
Krakos
,
J.
, and
Hosder
,
S.
,
2018
, “
Grid Influence on Turbulence Model Coefficient Uncertainties in Transonic Wall-Bounded Flows
,”
AIAA J.
,
56
(
8
), pp.
3123
3137
.
7.
He
,
X.
,
Zhao
,
F.
, and
Vahdati
,
M.
,
2020
, “
Uncertainty Quantification of Spalart–Allmaras Turbulence Model Coefficients for Simplified Compressor Flow Features
,”
ASME J. Fluids Eng.
,
142
(
9
), p.
091501
.
8.
Cheung
,
S. H.
,
Oliver
,
T. A.
,
Prudencio
,
E. E.
,
Prudhomme
,
S.
, and
Moser
,
R. D.
,
2011
, “
Bayesian Uncertainty Analysis With Applications to Turbulence Modeling
,”
Reliab. Eng. Syst. Safe.
,
96
(
9
), pp.
1137
1149
.
9.
Edeling
,
W. N.
,
Cinnella
,
P.
,
Dwight
,
R. P.
, and
Bijl
,
H.
,
2014
, “
Bayesian Estimates of Parameter Variability in the kε Turbulence Model
,”
J. Comput. Phys.
,
258
, pp.
73
94
.
10.
Papadimitriou
,
D. I.
, and
Papadimitriou
,
C.
,
2015
, “
Bayesian Uncertainty Quantification of Turbulence Models Based on High-Order Adjoint
,”
Comput. Fluids
,
120
, pp.
82
97
.
11.
Sayma
,
A. I.
,
Vahdati
,
M.
,
Sbardella
,
L.
, and
Imregun
,
M.
,
2000
, “
Modeling of Three-Dimensional Viscous Compressible Turbomachinery Flows Using Unstructured Hybrid Grids
,”
AIAA J.
,
38
(
6
), pp.
945
954
.
12.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
13.
Taylor
,
J. V.
,
2019
, “
Separated Flow Topology in Compressors
,”
ASME J. Turbomach.
,
141
(
9
), p.
091014
.
14.
Rumsey
,
C. L.
,
2018
,
Turbulence Modeling Resource
,
NASA Langley Research Center
,
Hampton, VA
, https://turbmodels.larc.nasa.gov/, Accessed November 8, 2018.
15.
Gregory
,
N.
, and
O’reilly
,
C.
,
1973
,
Low-Speed Aerodynamic Characteristics of NACA 0012 Aerofoil Section, Including the Effects of Upper-Surface Roughness Simulating Hoar Frost
,
HM Stationery Office
,
London
.
16.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Boundary-Layer Theory
,
Springer
,
Berlin, Heidelberg
.
17.
Silverman
,
B. W.
,
1998
,
Density Estimation for Statistics and Data Analysis
,
Taylor & Francis Group
,
New York
.
18.
Ladson
,
C. L.
,
1988
, “
Effects of Independent Variation of Mach and Reynolds Numbers on the Low-Speed Aerodynamic Characteristics of the NACA 0012 Airfoil Section
,”
Technical Report
,
NASA Langley Research Center
,
Hampton, VA
.
19.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
, “
Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor
,”
Technical Report
,
NASA Lewis Research Center
,
Cleveland, OH
.
20.
Grosvenor
,
A. D.
,
2007
, “
RANS Prediction of Transonic Compressive Rotor Performance Near Stall
,”
ASME
Paper No. GT2007-27691.
21.
Fidalgo
,
J. V.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2012
, “
A Study of Fan-Distortion Interaction Within the NASA Rotor 67 Transonic Stage
,”
ASME J. Turbomach.
,
134
(
9
), p.
051011
.
22.
Zhang
,
W.
,
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2020
, “
Influence of the Inlet Distortion on Fan Stall Margin at Different Rotational Speed
,”
Aerosp. Sci. Technol.
,
98
, p.
105668
.
23.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
24.
Im
,
H.
,
Chen
,
X. Y.
, and
Zha
,
G.
,
2012
, “
Detached-Eddy Simulation of Rotating Stall Inception for a Full-Annulus Transonic Rotor
,”
J. Propul. Power
,
28
(
4
), pp.
782
798
.
25.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
26.
Ma
,
L.
,
Lu
,
L.
,
Fang
,
J.
, and
Wang
,
Q.
,
2014
, “
A Study on Turbulence Transportation and Modification of Spalart–Allmaras Model for Shock-Wave/Turbulent Boundary Layer Interaction Flow
,”
Chin. J. Aeronaut.
,
27
(
2
), pp.
200
209
.
27.
Liu
,
Y.
,
Lu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart–Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.
28.
Weatheritt
,
J.
, and
Sandberg
,
R.
,
2016
, “
A Novel Evolutionary Algorithm Applied to Algebraic Modifications of the RANS Stress–Strain Relationship
,”
J. Comput. Phys.
,
325
, pp.
22
37
.
29.
Wang
,
J. X.
,
Wu
,
J. L.
, and
Xiao
,
H.
,
2017
, “
Physics-Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data
,”
Phys. Rev. Fluids
,
2
(
3
), p.
034603
.
30.
Parish
,
E. J.
, and
Duraisamy
,
K.
,
2016
, “
A Paradigm for Data-Driven Predictive Modeling Using Field Inversion and Machine Learning
,”
J. Comput. Phys.
,
305
, pp.
758
774
.
31.
Matai
,
R.
, and
Durbin
,
P. A.
,
2019
, “
Zonal Eddy Viscosity Models Based on Machine Learning
,”
Flow Turbul. Combust.
,
103
(
1
), pp.
93
109
.
You do not currently have access to this content.