Abstract

Due to the increasing bypass ratios of modern engines, the fan stage is increasingly becoming the dominant source of engine noise. Accordingly, it is becoming more and more important to develop not only efficient but also quiet fan stages. In this paper, the noise emission of a fan for an aero-engine with a bypass ratio of 19 is reduced within a multidisciplinary design optimization (MDO) by means of a hybrid noise prediction method while at the same time optimizing the aerodynamic efficiency. The aerodynamic performance of each configuration in the optimization is evaluated by stationary Reynolds-averaged Navier–Stokes (RANS) simulations. These stationary flow simulations are also used to extract the aerodynamic excitation sources for the analytical fan noise prediction. The resulting large database of the optimization provides new insights into which extent an MDO can contribute to the design of both quiet and efficient fan stages. In addition to that the hybrid approach of numerical flow solutions and analytical description of the noise sources enables to understand the noise reduction mechanisms. In particular, the influence of rotor blade loading on the aerodynamic efficiency and the noise sources as well as the potential of configurations with a comparatively low number of outlet guide vanes (OGVs) is explored. The acoustic results of selected configurations are confirmed by unsteady RANS simulations.

References

1.
Heidmann
,
M. F.
,
1979
,
Interim Prediction Method for Fan and Compressor Source Noise
.
Tech. Rep. NASA Technical Memorandum X-71763
.
2.
Moreau
,
A.
, and
Guérin
,
S.
,
2010
, “
Development and Application of a New Procedure for Fan Noise Prediction
,”
AIAA Paper No. 2010-4034
.
3.
Moreau
,
A.
, and
Guérin
,
S.
,
2011
, “
Similarities of the Free-Field and in-Duct Formulations in Rotor Noise Problems
,”
AIAA Paper No. 2011-2759
.
4.
Moreau
,
A.
,
2017
, “
A Unified Analytical Approach for the Acoustic Conceptual Design of Fans of Modern Aeroengines
,”
Ph.D. thesis
,
TU-Berlin, Berlin, Germany
.
5.
Moreau
,
A.
, and
Guérin
,
S.
,
2016
, “
The Impact of Low-Speed Fan Design on Noise: An Exploratory Study
,”
ASME J. Turbomach.
,
138
(
8
), p.
081006
.
6.
Nallasamy
,
M.
, and
Envia
,
E.
,
2005
, “
Computation of Rotor Wake Turbulence Noise
,”
J. Sound Vib.
,
282
(
3–5
), pp.
649
678
.
7.
Carazo
,
A.
,
Roger
,
M.
, and
Omais
,
M.
,
2011
, “
Analytical Prediction of Wake-Interaction Noise in Counter-Rotation Open Rotors
,” AIAA Paper No. 2011-2758.
8.
Guérin
,
S.
,
Moreau
,
A.
,
Menzel
,
C.
, and
Weckmüller
,
C.
,
2012
, “
Open-Rotor Noise Prediction With a RANS-Informed Analytical Method
,” AIAA Paper No. 2012-2303.
9.
Jaron
,
R.
,
Moreau
,
A.
, and
Guérin
,
S.
,
2014
, “
RANS-Informed Fan Noise Prediction: Separation and Propagation of Rotor Wake and Potential Field
,” AIAA Paper No. 2014-2946.
10.
Jaron
,
R.
,
Moreau
,
A.
, and
Guérin
,
S.
,
2015
, “
Extrapolation of RANS Flow Data for Improved Analytical Fan Tone Prediction
,” AIAA Paper No. 2015-2515.
11.
Jaron
,
R.
,
Herthum
,
H.
,
Franke
,
M.
,
Moreau
,
A.
, and
Guérin
,
S.
,
2017
, “
Impact of Turbulence Models on RANS-Informed Prediction of Fan Broadband Interaction Noise
,”
ETC Paper No. ETC2017-067.
12.
Voß
,
C.
,
Aulich
,
M.
, and
Raitor
,
T.
,
2014
, “
Metamodel Assisted Aeromechanical Optimization of a Transonic Centrifugal Compressor
,”
Proceedings of the ISROMAC 15 Conference
,
Honolulu, HI
.
13.
Lengyel-Kampmann
,
T.
,
Otten
,
T.
,
Schmidt
,
T.
, and
Nicke
,
E.
,
2015
, “
Optimization of an Engine With a Gear Driven Counter Rotating Fan Part I: Fan Performance and Design
,”
Proceedings of the ISABE Conference 2015
,
Phoenix, AZ
.
14.
Jaron
,
R.
,
Moreau
,
A.
,
Guérin
,
S.
, and
Schnell
,
R.
,
2018
, “
Optimization of Trailing-Edge Serrations to Reduce Open-Rotor Tonal Interaction Noise
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021201
.
15.
Grasso
,
G.
,
Moreau
,
S.
,
Christophe
,
J.
, and
Schram
,
C.
,
2018
, “
Multi-Disciplinary Optimization of a Contra-Rotating Fan
,”
Int. J. Aeroacoust.
,
17
(
6–8
), pp.
655
686
.
16.
Becker
,
R.-G.
,
Reitenbach
,
S.
,
Klein
,
C.
,
Otten
,
T.
,
Nauroz
,
M.
, and
Siggel
,
M.
,
2015
, “
An Integrated Method for Propulsion System Conceptual Design
,” ASME Paper No. GT2015-43251.
17.
Otten
,
T.
, and
Lengyel-Kampmann
,
T.
,
2016
, “
Mission Based Comparison of Single- and Counter-Rotating Fan Designs
,”
30th Congress of the International Council of the Aeronautical Sciences
,
Daejeon, South Korea
.
18.
Cumpsty
,
N.
,
2010
, “
Preparing for the Future: Reducing Gas Turbine Environmental Impact-IGTI Scholar Lecture
,”
ASME J. Turbomach.
,
132
(
4
), p.
041017
.
19.
Aulich
,
M.
,
Voß
,
C.
, and
Raitor
,
T.
,
2014
, “
Optimization Strategies Demonstrated on a Transonic Centrifugal Compressor
,”
Proceedings of the ISROMAC 15 Conference
,
Honolulu, HI
.
20.
Voß
,
C.
, and
Nicke
,
E.
,
2008
,
Automatische Optimierungvon Verdichterstufen
.
21.
Moreau
,
A.
,
Aulich
,
A. L.
,
Jaron
,
R.
,
Nicke
,
E.
,
Enghardt
,
L.
, and
Knobbe-Eschen
,
H.
,
2016
, “
Optimization of Casing Contours in an Aero-Engine fan Stage With Emphasis on Rotor-Stator Interaction Noise
,”
Proceedings of the ISROMAC 16 Conference
,
Honolulu, HI
.
22.
Nürnberger
,
D.
,
Eulitz
,
F.
,
Schmitt
,
S.
, and
Zachcial
,
A.
,
2001
, “
Recent Progress in the Numerical Simulation of Unsteady Viscous Multistage Turbomachinery Flow
,” ISABE Paper No. 2001-1081.
23.
Yang
,
H.
,
Nürnberger
,
D.
, and
Kersken
,
H. P.
,
2006
, “
Toward Excellence in Turbomachinery Computational Fluid Dynamics: A Hybrid Structured-Unstructured Reynolds-Averaged Navier–Stokes Solver
,”
ASME J. Turbomach.
,
128
(
2
), pp.
390
402
.
24.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer
,
4
, pp.
625
632
.
25.
Denton
,
J.
, and
Singh
,
U.
,
1979
, “
Time Marching Methods for Turbomachinery Flow Calculations
,” VKI Lecture Series.
26.
Dhondt
,
G. D. C.
,
2010
,
The Finite Element Method for Three-Dimensional Thermomechanical Applications
,
John Wiley & Sons Inc
,
Chichester, UK
.
27.
Aulich
,
A. L.
,
Goerke
,
D.
,
Blocher
,
M.
,
Nicke
,
E.
, and
Kocian
,
F.
,
2013
, “
Multidisciplinary Automated Optimization Strategy on a Counter Rotating Fan
,” ASME Paper No. GT2013-94259.
28.
Reboul
,
G.
,
2010
, “
Modélisation du Bruit `a Large Bande de Soufflantes de Turboréacteurs
,”
Ph.D. thesis
,
Ècole centrale de Lyon
,
Lyon, France
.
29.
Hanson
,
D. B.
,
1980
, “
Influence of Propeller Design Parameters on Far-Field Harmonic Noise in Forward Flight
,”
AIAA J.
,
18
(
11
), pp.
1313
1319
.
30.
Sears
,
W. R.
,
1941
, “
Some Aspects of Non-Stationary Airfoil Theory and Its Practical Application
,”
J. Aeronaut. Sci.
,
8
(
3
), pp.
104
108
.
31.
Liepmann
,
H. W.
,
1952
, “
On the Application of Statistical Concepts to the Buffeting Problem
,”
J. Aeronaut. Sci.
,
19
(
12
), pp.
793
800
.
32.
Amiet
,
R.
,
1976
, “
High Frequency Thin-Airfoil Theory for Subsonic Flow
,”
AIAA J.
,
14
(
8
), pp.
1076
1082
.
33.
Amiet
,
R.
,
1975
, “
Acoustic Radiation From an Airfoil in a Turbulent Stream
,”
J. Sound Vib.
,
41
(
4
), pp.
407
420
.
34.
Jaron
,
R.
,
2018
, “
Aeroakustische Auslegung von Triebwerksfans Mittels Multidisziplinärer Optimierungen
,”
Ph.D. thesis
,
Technical University of Berlin
,
Berlin, Germany
.
35.
Crichton
,
D.
,
2007
, “
Fan Design and Operation for Ultra Low Noise
,”
Ph.D. thesis
,
University of Cambridge
,
Cambridge, UK
.
36.
Cumpsty
,
N.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific & Technical
,
Harlow UK
.
37.
Moreau
,
A.
, and
Guérin
,
S.
,
2020
, “
Experimental Validation of an Analytical Prediction Model for Fan Buzz-Saw Noise
,” ASME Paper No. GT2020-14279.
38.
Enghardt
,
L.
,
Kausche
,
P.
,
Moreau
,
A.
, and
Carolus
,
T. H.
,
2015
, “
Active Control of Fan Tones by Means of Trailing Edge Blowing
,” AIAA Paper No. 2015-2828.
39.
Woodward
,
R.
,
Hughes
,
C.
,
Jeracki
,
R.
, and
Miller
,
C.
,
2002
, “
Fan Noise Source Diagnostic Test—Far-Field Acoustic Results
,” AIAA Paper No. 2002-2427.
40.
Podboy
,
G.
,
Krupar
,
M.
,
Hughes
,
C.
, and
Woodward
,
R.
,
2002
, “
Fan Noise Source Diagnostic Test—LDV Measured Flow Field Results
,” AIAA Paper No. 2002-2431.
41.
Elliott
,
D.
, and
Dittmar
,
J.
,
2000
, “
Some Acoustic Results From the NASA/Pratt and Whitney Advanced Ducted Propulsor Model
,” AIAA Paper No. 2000-0351.
42.
Heidelberg
,
L.
, and
Elliott
,
D.
,
2000
, “
A Comparison of Measured Tone Modes for Two Low Noise Propulsion Fans
,” AIAA Paper No. 2000-1989.
43.
Bewick
,
C.
,
Adams
,
M.
,
Schwaller
,
P.
, and
Xu
,
L.
,
2001
, “
Noise and Aerodynamic Design and Test of a Low Tip Speed Fan
,” AIAA Paper No. 2001-2268.
44.
Guérin
,
S.
,
Moreau
,
A.
, and
Tapken
,
U.
,
2009
, “
Relation Between Source Models and Acoustic Duct Modes
,” AIAA Paper No. 2009-3364.
45.
Schwaller
,
P. J.
,
Parry
,
A. B.
,
Oliver
,
M. J.
, and
Eccleston
,
A.
,
1984
, “
Far-Field Measurements and Mode Analysis of the Effects of Vane/Blade Ratio on Fan Noise
,” AIAA Paper No. 84-2280.
46.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,” ASME Paper No. GT2014-25230.
47.
Wohlbrandt
,
A.
,
Weckmüller
,
C.
, and
Guérin
,
S.
,
2016
, “
A Robust Extension to the Triple Plane Pressure Mode Matching Method by Filtering Convective Perturbations
,”
Int. J. Aeroacoust.
,
15
(
1–2
), pp.
41
58
.
You do not currently have access to this content.