Abstract

Film cooling, as a key technology to ensure turbine survival in new generation gas turbines, has been studied profusely in subsonic flows. But in transonic flow, the determination of adiabatic cooling effectiveness faces a dilemma in the state of the art. Specifically, derivation of reference temperature, or local recovery temperature, in adiabatic effectiveness is disputable. Some researchers designate it to be the adiabatic wall temperature for the uncooled model (linear regression method (LRM)), but others calculate it from an iterative procedure based on a pair of cooling tests (dual linear regression technique (DLRT)). As the first of the kind effort to explore this dilemma, this article carried out transient thermal measurements by infrared thermography, for transonic flow over an idealized blade tip model. Heat transfer experiments were conducted for the uncooled and cooled cases, at two mainstream temperatures of 340 K and 325 K and two coolant temperatures of 276 K and 287 K. Data from these six experimental groups were processed by LRM and DLRT, respectively, to obtain heat transfer coefficient and adiabatic effectiveness, whose sensitivity to mainstream and coolant temperatures is tested and compared. It is found that the heat transfer coefficient is basically insensitive to temperature boundary conditions and data reduction methods, as expected. However, for adiabatic effectiveness, LRM results are sensitive to the 11 K decrease of coolant temperature in areas confined to the upstream of cooling injection, and much less so to the 15 K rise in mainstream temperature. DLRT result, derived from the test pair with two coolant temperatures, reduces globally and conspicuously with 15 K increase in mainstream temperature. Furthermore, adiabatic effectiveness obtained by LRM is qualitatively different from that by DLRT, which is mainly attributed to the large discrepancy in reference temperature between the two methods.

References

1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
2.
Ekkad
,
S. V.
, and
Han
,
J.-C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.
3.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME Turbo Expo Conference Proceedings
, Paper. No. GT2004-53998.
4.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
Film Cooling Measurements on Cylindrical Models With Simulated Thermal Barrier Coating Spallation
,”
J. Thermophys. Heat Transfer
,
14
(
2
), pp.
194
200
.
5.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(
1
), pp.
196
205
.
6.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.
7.
Azad
,
G. S.
,
Han
,
J. C.
,
Teng
,
S. Y.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
(
4
), pp.
717
724
.
8.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
,
1999
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine Part 1—Experimental Results
,”
ASME J. Turbomach.
,
122
(
2
), pp.
263
271
.
9.
Didier
,
F.
,
Dénos
,
R.
, and
Arts
,
T.
,
2002
, “
Unsteady Rotor Heat Transfer in a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
124
(
4
), pp.
614
622
.
10.
Key
,
N. L.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
.
11.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.
12.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
13.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
,
126
(
4
), pp.
597
603
.
14.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2013
, “
Aerothermal Performance of a Cooled Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
135
(
1
), p.
011041
.
15.
Ma
,
H.
,
Zeng
,
W.
,
Jiang
,
H.
, and
Hong
,
J.
,
2022
, “
Impact of Cooling Injection on Shock Wave Over a Flat Tip in High Pressure Turbine
,”
ASME J. Turbomach.
,
144
(
1
), p.
011012
.
16.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part II: Analysis of Aerothermal Interaction Physics
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052507
.
17.
Saul
,
A. J.
,
Ireland
,
P. T.
,
Coull
,
J. D.
,
Wong
,
T. H.
,
Li
,
H.
, and
Romero
,
E.
,
2019
, “
An Experimental Investigation of Adiabatic Film Cooling Effectiveness and Heat Transfer Coefficient on a Transonic Squealer Tip
,”
ASME J. Turbomach.
,
141
(
9
), p.
091005
.
18.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
19.
Roy
,
A.
,
Jain
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
,
Crawford
,
M. E.
, and
Abraham
,
S.
,
2017
, “
Heat Transfer Performance of a Transonic Turbine Blade Passage in the Presence of Leakage Flow Through Upstream Slot and Mateface Gap With Endwall Contouring
,”
ASME J. Turbomach.
,
139
(
12
), p.
121006
.
20.
Liu
,
C.
,
Zhu
,
H. R.
,
Fu
,
Z. Y.
, and
Xu
,
R. H.
,
2015
, “
The Effects of Inlet Reynolds Number, Exit Mach Number and Incidence Angle on Leading Edge Film Cooling Effectiveness of a Turbine Blade in a Linear Transonic Cascade
,”
Proceedings of ASME Turbo Expo: Turbine Technical Conference and Exposition
,
Montreal, Canada
,
June 15–19
,
p. V05BT12A025
.
21.
Hossain
,
M. A.
,
Asar
,
M. E.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2020
, “
Experimental Investigation of Sweeping Jet Film Cooling in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
142
(
4
), p.
041009
.
22.
Dees
,
J. E.
,
Bogard
,
D. G.
,
Ledezma
,
G. A.
, and
Laskowski
,
G. M.
,
2013
, “
Overall and Adiabatic Effectiveness Values on a Scaled Up, Simulated Gas Turbine Vane
,”
ASME J. Turbomach.
,
135
(
5
), p.
051017
.
23.
Wiese
,
C. J.
,
Bryant
,
C. E.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2018
, “
Influence of Scaling Parameters and Gas Properties on Overall Effectiveness on a Leading Edge Showerhead
,”
ASME J. Turbomach.
,
140
(
11
), p.
111007
.
24.
Johnson
,
R.
,
Maikell
,
J.
,
Bogard
,
D. G.
,
Piggush
,
J.
,
Kohli
,
A.
, and
Blair
,
M.
,
2009
, “
Experimental Study of the Effects of an Oscillating Approach Flow on Overall Cooling Performance of a Simulated Turbine Blade Leading Edge
,”
ASME Turbo Expo Conference Proceedings
, Paper No. GT2009-60290.
25.
Luque
,
S.
,
Jones
,
T. V.
, and
Povey
,
T.
,
2016
, “
Theory for the Scaling of Metal Temperatures in Cooled Compressible Flows
,”
Int. J. Heat Mass Transfer
,
102
, pp.
331
340
.
26.
Luque
,
S.
,
Jones
,
T. V.
, and
Povey
,
T.
,
2017
, “
Scaling of Turbine Metal Temperatures in Cooled Compressible Flows—Experimental Demonstration of a New Theory
,”
ASME J. Turbomach.
,
139
(
8
), p.
081001
.
27.
Ma
,
H.
,
Wang
,
Z.
,
Wang
,
L.
,
Zhang
,
Q.
,
Yang
,
Z.
, and
Bao
,
Y.
,
2016
, “
Ramp Heating in High-Speed Transient Thermal Measurement With Reduced Uncertainty
,”
J. Propul. Power
,
32
(
5
), pp.
1190
1198
.
28.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.
29.
Wheeler
,
A. P. S.
, and
Saleh
,
Z.
,
2013
, “
Effect of Cooling Injection on Transonic Tip Flows
,”
J. Propul. Power
,
29
(
6
), pp.
1374
1381
.
30.
Wheeler
,
A. P. S.
, and
Sandberg
,
R. D.
,
2016
, “
Numerical Investigation of the Flow Over a Model Transonic Turbine Blade Tip
,”
J. Fluid Mech.
,
803
, pp.
119
143
.
31.
Feng
,
W. H.
,
Zhao
,
Y. X.
,
Wang
,
C. L.
,
Wang
,
Q. C.
, and
Zhou
,
Y. Y.
,
2021
, “
Experimental Study on the Rapid Establishment of the Transonic Gap Flow Field
,”
Phys. Fluids
,
33
(
1
), p.
016101
.
32.
Feng
,
W. H.
,
Zhao
,
Y. X.
,
Wang
,
Q. C.
, and
Wang
,
C. L.
,
2020
, “
Influence of the Reynolds Number on Transonic Tip Flow
,”
Int. J. Aerosp. Eng.
,
2020
, pp.
1
11
.
33.
Saleh
,
Z.
,
Avital
,
E. J.
, and
Korakianitis
,
T.
,
2020
, “
Effect of In-Service Burnout on the Transonic tip Leakage Flows Over Flat Tip Model
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
234
(
5
), pp.
655
669
.
34.
Saleh
,
Z. J.
,
Avital
,
E. J.
, and
Korakianitis
,
T.
,
2021
, “
Effect of In-Service Burnout Effect on the Transonic Leakage Flows Over Cavity tip Model
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
235
(
8
), pp.
1847
1863
.
35.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
36.
Zhang
,
Q.
,
O’Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
37.
Zhang
,
Q.
,
O’Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
38.
Maffulli
,
R.
, and
He
,
L.
,
2014
, “
Wall Temperature Effects on Heat Transfer Coefficient for High-Pressure Turbines
,”
J. Propul. Power
,
30
(
4
), pp.
1080
1090
.
39.
Maffulli
,
R.
, and
He
,
L.
,
2017
, “
Impact of Wall Temperature on Heat Transfer Coefficient and Aerodynamics for Three-Dimensional Turbine Blade Passage
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041002
.
40.
Rogers
,
N.
,
Ren
,
Z.
,
Buzzard
,
W.
,
Sweeney
,
B.
,
Tinker
,
N.
,
Ligrani
,
P.
,
Hollingsworth
,
K.
, et al
,
2017
, “
Effects of Double Wall Cooling Configuration and Conditions on Performance of Full-Coverage Effusion Cooling
,”
ASME J. Turbomach.
,
139
(
5
), p.
051009
.
41.
Couch
,
E.
,
Christophel
,
J.
,
Hohlfeld
,
E.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
,
2005
, “
Comparison of Measurements and Predictions for Blowing From a Turbine Blade tip
,”
J. Propul. Power
,
21
(
2
), pp.
335
343
.
You do not currently have access to this content.