Abstract

Film cooling on airfoils is a crucial cooling method as the gas turbine industry seeks higher turbine inlet temperatures. Shaped film cooling holes are widely used in many designs given the improved performance over that of cylindrical holes. Although there have been numerous studies of shaped holes, there is no established baseline shaped hole to which new cooling hole designs can be compared. The goal of this study is to offer the community a shaped hole design, representative of proprietary and open literature holes that serves as a baseline for comparison purposes. The baseline shaped cooling hole design includes the following features: hole inclination angle of 30 deg with a 7 deg expansion in the forward and lateral directions; hole length of 6 diameters; hole exit-to-inlet area ratio of 2.5; and lateral hole spacing of 6 diameters. Adiabatic effectiveness was measured with this newly shaped hole and found to peak near a blowing ratio of 1.5 at density ratios of 1.2 and 1.5, at both low freestream turbulence and moderate freestream turbulence of 5%. Reductions in area-averaged effectiveness due to freestream turbulence at low blowing ratios were as high as 10%.

References

1.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film Cooling Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.
2.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film Cooled Endwall
,”
ASME J. Turbomach.
,
128
(
1
), pp.
43
52
.
3.
Gritsch
,
M.
,
Colban
,
W.
,
Schär
,
H.
, and
Döbbeling
,
K.
,
2005
, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
127
(
4
), pp.
718
725
.
4.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1999
, “
Effects of Hole Shape on Film Cooling With Large Angle Injection
,”
ASME International Gas Turbine and Aeroengine Congress
, Paper No. 99-GT-165.
5.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.
6.
Heneka
,
C.
,
Schulz
,
A.
,
Bauer
,
H.
,
Heselhaus
,
A.
, and
Crawford
,
M. E.
,
2012
, “
Film Cooling Performance of Sharp Edged Diffuser Holes With Lateral Inclination
,”
ASME J. Turbomach.
,
134
(
4
), p.
041015
.
7.
Liu
,
J. S.
,
Malak
,
M. F.
,
Tapia
,
L. A.
,
Crites
,
D. C.
,
Ramachandran
,
D.
,
Srinivasan
,
B.
,
Muthiah
,
G.
, and
Ventkataramanan
,
J.
,
2010
, “
Enhanced Film Cooling Effectiveness With New Shaped Holes
,”
Proceedings of ASME Turbo Expo
, Paper No. GT2010-22774.
8.
Hyams
,
D. G.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part III—Streamwise Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
122
132
.
9.
Lu
,
Y.
,
2007
, “
Effect of Hole Configurations on Film Cooling From Cylindrical Inclined Holes for the Application to Gas Turbine Blades
,”
Ph.D. Dissertation
,
Louisiana State University, Baton Rouge, LA
.
10.
Dorrington
,
J. R.
,
Bogard
,
D. G.
, and
Bunker
,
R. S.
,
2007
, “
Film Effectiveness Performance for Coolant Holes Embedded in Various Shallow Trench and Crater Depressions
,”
Proceedings of ASME Turbo Expo
, Paper No. GT2007-27992.
11.
Sargison
,
J. E.
,
Oldfield
,
M. L. G.
,
Guo
,
S. M.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2005
, “
Flow Visualization of the External Flow From a Converging Slot-Hole Film-Cooling Geometry
,”
Exp. Fluids
,
38
(
3
), pp.
304
318
.
12.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.
13.
Kusterer
,
K.
,
Tekin
,
N.
,
Reiners
,
F.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2013
, “
Highest-Efficient Film Cooling by Improved Nekomimi Film Cooling Holes—Part 1: Ambient Air Flow Conditions
,”
Proceedings of ASME Turbo Expo
, Paper No. GT2013-95027.
14.
Moser
,
S.
,
Ivanisin
,
M.
,
Woisetschläger
,
J.
, and
Jericha
,
H.
,
2000
, “
Novel Blade Cooling Engineering Solution
,”
ASME International Gas Turbine and Aeroengine Congress
, Paper No. 2000-GT-0242.
15.
Liu
,
C.
,
Zhu
,
H.
,
Bai
,
J.
, and
Xu
,
D.
,
2012
, “
Experimental and Numerical Investigation on the Film Cooling of Waist-Shaped Slot Holes Comparing With Converging Slot Holes
,”
ASME J. Turbomach.
,
134
(
1
), p.
011021
.
16.
Okita
,
Y.
, and
Nishiura
,
M.
,
2007
, “
Film Effectiveness Performance of an Arrowhead-Shaped Film-Cooling Hole Geometry
,”
ASME J. Turbomach.
,
129
(
2
), pp.
331
339
.
17.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
.
18.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2008
, “
A Comparison of Cylindrical and Fan-Shaped Film Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
130
(
3
), p.
031007
.
19.
Gao
,
Z.
,
Narzary
,
D. P.
, and
Han
,
J.-C.
,
2009
, “
Film-Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
131
(
1
), p.
011019
.
20.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T. H.
,
Harding
,
S.
,
Lewis
,
S.
, and
Bons
,
J. P.
,
2012
, “
Deposition Near Film Cooling Holes on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041013
.
21.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2013
, “
Shaped Hole Literature Review Database
,”
Penn State Experimental and Computational Convection Laboratory (ExCCL)
, https://sites.psu.edu/turbine/public-shaped-hole/.
22.
Colban
,
W.
,
Thole
,
K. A.
, and
Bogard
,
D.
,
2011
, “
A Film Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME J. Turbomach.
,
133
(
1
), p.
011002
.
23.
Thole
,
K. A.
,
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1992
,
Rotating Machinery Transport Phenomena
,
J. H.
Kim
and
W. J.
Yang
, eds.,
Hemisphere Publishing Corporation
,
New York
, pp.
69
85
.
24.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME International Gas Turbine and Aeroengine Congress
, Paper No. 97-GT-45.
25.
auf dem Kampe
,
T.
,
Völker
,
S.
,
Sämel
,
T.
,
Heneka
,
C.
,
Ladisch
,
H.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2013
, “
Experimental and Numerical Investigation of Flow Field and Downstream Surface Temperatures of Cylindrical and Diffuser Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
135
(
1
), p.
011026
.
26.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
.
27.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Semmler
,
K.
,
2000
, “
Film Cooling on a Convex Surface With Zero Pressure Gradient Flow
,”
Int. J. Heat Mass Transfer
,
43
(
16
), pp.
2973
2987
.
28.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061007
.
29.
Davidson
,
F. T.
,
Bruce-Black
,
J. E.
,
Bogard
,
D. G.
, and
Johns
,
D. R.
,
2008
, “
Adiabatic Effectiveness on the Suction Side of a Turbine Vane and the Effects of Curvature at the Point of Film Injection
,”
Proceedings of ASME Turbo Expo
, Paper No. GT2008-51350.
30.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propuls. Power
,
22
(
2
), pp.
249
270
.
31.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
,
1996
, “
The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
814
825
.
32.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
A.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
33.
Fawcett
,
R. J.
,
Wheeler
,
A. P. S.
,
He
,
L.
, and
Taylor
,
R.
,
2012
, “
Experimental Investigation Into Unsteady Effects on Film Cooling
,”
ASME J. Turbomach.
,
134
(
2
), p.
021015
.
34.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements for Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
35.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2000
, “
Film Cooling Holes With Expanded Exits: Near-Hole Heat Transfer Coefficients
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
146
155
.
36.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements for Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
557
563
.
37.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Effect of Internal Coolant Crossflow on the Effectiveness of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
125
(
3
), pp.
547
554
.
38.
Eberly
,
M. K.
, and
Thole
,
K. A.
,
2014
, “
Time-Resolved Film Cooling Flows at High and Low Density Ratios
,”
ASME J. Turbomach.
,
136
(
6
), p.
061003
.
39.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2006
,
Theory and Design for Mechanical Measurements
,
John Wiley & Sons, Inc
.,
Hoboken, NJ
, pp.
156
178
.
40.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
41.
Pichon
,
Y.
,
2009
, “
Turbulence Field Measurements for the Small Windtunnel
,” TTCRL Report,
University of Texas at Austin
.
42.
Harder
,
K. J.
, and
Tiederman
,
W. G.
,
1991
, “
Drag Reduction and Turbulent Structure in Two-Dimensional Channel Flows
,”
Philos. Trans. R. Soc. Lond. A
,
336
(
1640
), pp.
19
34
.
You do not currently have access to this content.