Abstract

Deposition studies were conducted using two impingement jet facilities: a 60 m/s cold jet (830–950 K) impinging on a heated Hastelloy-X surface (1033–1255 K) and a 215 m/s hot jet (1450–1625 K) impinging on an uncooled ceramic target or a cooled thermal barrier coated (TBC) surface (1090–1400 K). These can be considered analogs for an internal impingement cooling jet flow and an external nozzle guide vane leading edge flow respectively. Airflows were seeded with 0–10 µm Arizona road dust and deposition accumulated over a period of 5–10 min. Selected tests were completed with other size distributions. Studies were conducted by varying flow temperature at constant surface temperature and vice-versa. For both hot and cold impingement jets, the sensitivity of capture efficiency to fluid (and thus particle) temperature was found to be roughly double the sensitivity to surface temperature. Hot jet tests with three different size distributions of dust (0–5, 0–10, and 5–10 µm) allowed particle size sensitivity to be evaluated. For both target types (ceramic and cooled TBC), the 0–10 µm test dust produced the highest deposition rate of the three size distributions. Possible explanations for the observed behavior are proposed. Companion CFD studies modeling both impinging jets with particle deposition demonstrate that temperature induced variations in particle trajectories alone are not sufficient to explain observed deposition trends with temperature. Implications for the development of a universal sticking model relevant to gas turbine deposition are discussed.

References

1.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p. 051001.
2.
Bowen
,
C.
, and
Bons
,
J. P.
,
2021
, “
Enhancing Turbine Deposition Prediction Capability With Conjugate Mesh Morphing
IGTI 2021
,
Virtual
, Paper No. GT2-21-60224.
3.
Lo
,
C.
,
Bons
,
J. P.
,
Yao
,
Y.
, and
Capecelatro
,
J.
,
2022
, “
Assessment of Stochastic Models for Predicting Particle Transport and Deposition in Turbulent Pipe Flows
,”
J. Aerosol Sci.
,
162
, p.
105954
. doi: 10.1016/j.jaerosci.2022.105954
4.
Crowe
,
E. D.
, and
Bons
,
J. P.
,
2019
, “
Effects of Dust Composition on Particle Deposition in an Effusion Cooling Geometry
,”
IGTI 2019
,
Phoenix, AZ
,
June 17–21
, Paper No. GT2019-91032.
5.
Elms
,
J.
,
Pawley
,
A.
,
Bojdo
,
N.
,
Jones
,
M.
, and
Clarkson
,
R.
,
2020
, “
The Formation of High Temperature Minerals From an Evaporite-Rich Dust in Gas Turbine Engine Ingestion Tests
,”
2020 IGTI
, Paper No. GT2020-14236.
6.
Murugan
,
M.
,
Ghoshal
,
A.
,
Walock
,
M.
,
Nieto
,
A.
,
Bravo
,
L.
,
Barnett
,
B.
,
Pepi
,
M.
, et al
,
2017
, “
Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades
,”
ASME Turbo Expo 2017: Power for Land, Sea, and Air
,
Charlotte, NC
,
June
, Paper No. GT2017-64051.
7.
Sacco
,
C.
,
Bowen
,
C.
,
Lundgreen
,
R.
,
Bons
,
J. P.
,
Ruggiero
,
E.
,
Allen
,
J.
, and
Bailey
,
J.
,
2018
, “
Dynamic Similarity in Turbine Deposition Testing and the Role of Pressure
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102605
. doi: 10.1115/1.4038550
8.
Bonilla
,
C.
,
Webb
,
J.
,
Clum
,
C.
,
Casaday
,
B.
,
Brewer
,
E.
, and
Bons
,
J. P.
,
2012
, “
The Effect of Particle Size and Film Cooling on Nozzle Guide Vane Deposition
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
101901
.
9.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
,
Bons
,
J. P.
,
Gledhill
,
A. D.
, and
Padture
,
N. P.
,
2013
, “
Coal Ash Deposition on Nozzle Guide Vanes: Part I—Experimental Characteristics of Four Coal Ash Types
,”
ASME J. Turbomach.
,
135
(
2
), p.
021033
.
10.
Lundgreen
,
R. K.
,
Sacco
,
C.
,
Prenter
,
R.
, and
Bons
,
J. P.
,
2016
, “
Temperature Effects on Nozzle Guide Vane Deposition in a New Turbine Cascade Rig
,”
ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
, Paper No. GT2016-57560.
11.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2016
, “
Deposition on a Cooled Nozzle Guide Vane With Non-Uniform Inlet Temperatures
,”
ASME J. Turbomach
,
138
(
10
), p.
101005
.
12.
Wenglarz
,
R. A.
, and
Fox
,
R. G.
, Jr.
,
1990
, “
Physical Aspects of Deposition From Coal-Water Fuels Under Gas Turbine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
112
(
1
), pp.
9
14
.
13.
Taltavull
,
C.
,
Dean
,
J.
, and
Clyne
,
W. T.
,
2016
, “
Adhesion of Volcanic Ash Particles Under Controlled Conditions and Implications for Their Deposition in Gas Turbines
,”
Adv. Eng. Mater.
,
18
(
5
), pp.
803
813
.
14.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2008
, “
Effects of Temperature and Particle Size on Deposition in Land Based Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051503
.
15.
Anderson
,
R. J.
,
Logan
,
R. G.
,
Meyer
,
C. T.
, and
Dennis
,
R. A.
,
1990
, “
A Combustion/Deposition Entrained Reactor for High Temperature/Pressure Studies of Coal and Coal Minerals
,”
Rev. Sci. Instrum.
,
61
(
4
), pp.
1294
1302
.
16.
Ai
,
W.
, and
Fletcher
,
T. H.
,
2009
, “
Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June
, Paper No. GT2009-59573.
17.
Boulanger
,
A.
,
Patel
,
H.
,
Hutchinson
,
J.
,
DeShong
,
W.
,
Xu
,
W.
,
Ng
,
W.
, and
Ekkad
,
S.
,
2016
, “
Preliminary Experimental Investigation of Initial Onset of Sand Deposition in the Turbine Section of Gas Turbines
,”
ASME Turbo Expo 2016: Power for Land, Sea, and Air
,
Soeul, South Korea
,
June
, Paper No. GT2016-56059.
18.
Laycock
,
R.
, and
Fletcher
,
T. H.
,
2016
, “
Independent Effects of Surface and Gas Temperature on Coal Fly Ash Deposition in Gas Turbines at Temperatures up to 1400C
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021402
.
19.
Clark
,
R. A.
,
Plewacki
,
N.
,
Gnanaselvam
,
P.
, and
Bons
,
J. P.
,
2021
, “
The Effect of Surface Temperature on Deposition With Thermal Barrier Coatings
,”
ASME J. Turbomach.
,
143
(
4
), p.
041004
. doi: 10.1115/1.4049856
20.
Song
,
W.
,
Lavallée
,
Y.
,
Hess
,
K.
,
Kueppers
,
U.
,
Cimarelli
,
C.
, and
Dingwell
,
D.
,
2016
, “
Volcanic Ash Melting Under Conditions Relevant to Ash Turbine Interactions
,”
J. Nat. Commun.
,
7
, pp.
1
10
.
21.
Varney
,
B.
,
Barker
,
B.
,
Bons
,
J. P.
,
Wolff
,
T.
, and
Gnanaselvam
,
P.
,
2021
, “
Fine Particulate Deposition in an Effusion Plate Geometry
,”
ASME J. Turbomach.
,
143
(
1
), p.
011001
.
22.
Pinon
,
A. V.
,
Wierez-Kien
,
M.
,
Craciun
,
A. D.
,
Beyer
,
N.
,
Gallani
,
J. L.
, and
Rastei
,
M. V.
,
2016
, “
Thermal Effects on van der Waals Adhesive Forces
,”
Phys. Rev. B
,
93
(
3
), p.
035424
.
23.
Bowen
,
C. P.
, and
Bons
,
J. P.
,
2020
, “
An Experimental and Computational Investigation of Absolute Pressure Effects on Deposition in an Effusion Cooling Geometry
,”
IGTI 2020
,
Virtual
, Paper No. GT2020-15632.
24.
Walsh
,
W. S.
,
Thole
,
K. A.
, and
Joe
,
C.
,
2006
, “
Effects of Sand Ingestion on the Blockage of Film-Cooling Holes
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
June
, Paper No. GT2006-90067.
25.
Wylie
,
S.
,
Bucknell
,
A.
,
Forsyth
,
P.
,
McGilvray
,
M.
, and
Gillespie
,
D. R. H.
,
2016
, “
Reduction in Flow Parameter Resulting From Volcanic Ash Deposition in Engine Representative Cooling Passages
,”
ASME Turbo Expo 2016
,
Soeul, South Korea
,
June
, Paper No. GT2016-57296.
26.
Wolff
,
T.
,
Bowen
,
C.
, and
Bons
,
J. P.
,
2018
, “
The Effect of Particle Size on Deposition in an Effusion Cooling Geometry
,”
AIAA SciTech 2018
,
Kissimmee, FL
,
Jan. 8–12
, Paper No. AIAA-2018-0391.
27.
Clum
,
C.
,
Bokar
,
E.
,
Casaday
,
B.
, and
Bons
,
J. P.
,
2014
, “
Particle Deposition in Internal Cooling Cavities of a Nozzle Guide Vane—Part I: Experimental Investigation
,”
ASME Turbo Expo 2014
,
Dusseldorf, Germany
,
June 16–20
, Paper No. GT2014-27150.
28.
Land
,
C. C.
,
Joe
,
C.
, and
Thole
,
K. A.
,
2010
, “
Considerations of a Double-Wall Cooling Design to Reduce Sand Blockage
,”
ASME J. Turbomach.
,
132
(
3
), p.
031011
.
29.
Cardwell
,
N.D.
,
Thole
,
K.A.
, and
Burd
,
S.W.
,
2010
, “
Investigation of Sand Blocking Within Impingement and Film-Cooling Holes
,”
ASME J. Turbomach.
,
132
(
2
),
021020.
30.
Whitaker
,
S. W.
,
Peterson
,
B.
,
Miller
,
A. F.
, and
Bons
,
J. P.
,
2016
, “
The Effect of Particle Loading, Size, and Temperature on Deposition in a Vane Leading Edge Impingement Cooling Geometry
,”
ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
, Paper No. GT2016-57413.
31.
Whitaker
,
S. M.
,
Lundgreen
,
R. K.
, and
Bons
,
J. P.
,
2017
, “
Effects of Metal Surface Temperature on Deposition-Induced Flow Blockage in a Vane Leading Edge Cooling Geometry
,”
ASME Turbo Expo 2017
,
Charlotte, SC
,
June 26–30
, Paper No. GT2017-64946.
32.
Bowen
,
C. P.
,
Libertowski
,
N. D.
,
Mortazavi
,
M.
, and
Bons
,
J. P.
,
2019
, “
Modeling Deposition in Turbine Cooling Passages With Temperature Dependent Adhesion and Mesh Morphing
,”
ASME J. Turbomach.
,
141
(
7
), p.
071010
.
33.
Lundgreen
,
R. K.
,
2017
, “
Pressure and Temperature Effects on Particle Deposition in an Impinging Flow
,”
ASME Turbo Expo 2017
,
Charlotte, NC
,
June
, Paper No. GT2017-64649.
34.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2009
, “Effect of Blowing Ratio on Syngas Fly Ash Particle Deposition on a Three-Row Leading Edge Film Cooling Geometry Using Large Eddy Simulations,” ASME Paper No. GT2009-59326.
35.
Singh
,
S.
, and
Tafti
,
D.
,
2013
, “
Predicting the Coefficient of Restitution for Particle Wall Collisions in Gas Turbine Components
,”
ASME Turbo Expo 2013
,
San Antonio, TX
,
June
, Paper No. GT2013-95623.
36.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.
37.
Plewacki
,
N.
,
Gnanaselvam
,
P.
, and
Bons
,
J. P.
,
2020
, “
The Effect of Elevated Temperatures on Airborne Particle Deposition and Rebounds
,”
AIAA SciTech 2020
,
Orlando, FL
,
Jan. 6–10
, Paper No. AIAA-2020-1576.
38.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
Di Mare
,
L.
, and
Montomoli
,
F.
,
2017
, “
An Energy Based Fouling Model for Gas Turbines: EBFOG
,”
ASME J. Turbomach.
,
139
(
2
), p.
021002
.
39.
Borello
,
D.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2012
, “
An Integrated Particle-Tracking Impact/Adhesion Model for the Prediction of Fouling in a Subsonic Compressor
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
092002
.
40.
Curtis
,
D. B.
,
Meland
,
B.
,
Aycibin
,
M.
,
Arnold
,
N. P.
,
Grassian
,
V. H.
,
Young
,
M. A.
, and
Kleiber
,
P. D.
,
2008
, “
A Laboratory Investigation of Light Scattering From Representative Components of Mineral Dust Aerosol at a Wavelength of 550nm
,”
J. Geophys. Res.
,
113
(
D8
), p.
D08210
.
41.
Dreeben
,
T. D.
, and
Pope
,
S. B.
,
1997
, “
Probability Density Function and Reynolds-Stress Modeling of Near-Wall Turbulent Flows
,”
Phys. Fluids
,
9
(
1
), pp.
154
163
.
42.
Dehbi
,
A.
,
2008
, “
Turbulent Particle Dispersion in Arbitrary Wall-Bounded Geometries: A Coupled CFD-Langevin-Equation Based Approach
,”
Int. J. Multiphase Flow
,
34
(
9
), pp.
819
828
.
43.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.
44.
Yang
,
X.
,
Hu
,
Y.
,
Yu
,
T.
, and
Liu
,
Z.
,
2019
, “
Numerical Modeling of Particle Deposition in Turbine Cascade
,”
2019 IGTI
,
Phoenix AZ
,
June
, Paper No. GT2019-90739.
You do not currently have access to this content.