Abstract

In the present paper, three centrifugal stages of high volume flow coefficient are compared to each-other regarding their aerodynamic performance in design point and off-design point conditions at different speed and inlet guide vane (IGV)-setting angle: two stages with full-blade design (no splitter blades) have been numerically designed with different design geometry methodology. One geometry is based on a classical ruling surface design with a linear leading edge, the second geometry based on a fully-three-dimensional surface including a blade bow at the trailing edge and a barreled sweep at the leading edge. According to impeller test rig measurements and computational fluid dynamics (CFD) calculation, the classical ruling surface designed impeller outperforms the more sophisticated centrifugal stage with fully 3D-blade at fully axially guided IGV-flow. In the contrary, at closing IGV-off-design setting angles, toward surge operation, the fully 3D-blade impeller performs with higher efficiency and steeper negative pressure slope. On the search of the geometrical causes for the different aerodynamic performance (especially at IGV-off-design conditions), focus is set on the analysis of IGV-flow-interaction with the inducer flow and impeller diffusion. The one-dimensional analysis of the spanwise flow at the impeller leading edge reveals that, compared with the ruling surface impeller, the fully 3D-blade performs with lower flow incidence losses in favor to IGV-off-design operation than at IGV-neutral position. The streamwise flow analysis confirms the improved flow incidence characteristics of the 3D-blade impeller due to reduction of aerodynamic blockage and entropy production in the vicinity of the impeller leading edge. Based on CFD calculations, a new correlation of secondary flow and flow incidence is proposed, to be used for one-dimensional modeling.

References

1.
Rusch
,
D.
, and
Casey
,
M.
,
2013
, “
The Design Space Boundaries for High Flow Capacity Centrifugal Compressors
,”
ASME J. Turbomach.
,
135
(
3
), p.
031035
.
2.
Hazby
,
H.
,
Robinson
,
C.
,
Casey
,
M.
,
Rusch
,
D.
, and
Hunziker
,
R.
,
2018
, “
Free-Form Versus Ruled Inducer Design in a Transonic Centrifugal Impeller
,”
ASME J. Turbomach.
,
140
(
1
), p.
011010
.
3.
Wittrock
,
D.
,
Junker
,
M.
,
Beversdorff
,
M.
,
Peters
,
A.
, and
Nicke
,
E.
,
2020
, “
A Deep Insight Into the Transonic Flow of an Advanced Centrifugal Compressor Design
,”
ASME J. Turbomach.
,
142
(
9
), p.
091004
.
4.
Mosdzien
,
M.
,
Enneking
,
M.
,
Hehn
,
A.
,
Grates
,
D. R.
, and
Jeschke
,
P.
,
2018
, “
Influence of Blade Geometry on Secondary Flow Development in a Transonic Centrifugal Compressor
,”
J. Glob. Power Propuls. Soc.
,
2
(
1
), pp.
429
441
.
5.
Hehn
,
A.
,
Mosdzien
,
M.
,
Grates
,
D. R.
, and
Jeschke
,
P.
,
2018
, “
Aerodynamic Optimization of a Transonic Centrifugal Compressor by Using Arbitrary Blade Surfaces
,”
ASME J. Turbomach.
,
140
(
5
), p.
051011
.
6.
Tsukamoto
,
K.
,
Hiradate
,
K.
,
Sakamoto
,
K.
,
Chiba
,
H.
, and
Shinkawa
,
Y.
,
2015
, “
Efficiency Increase in Centrifugal Compressor With Open Impeller by Using Curvelinear Element Blade
,”
ASME Paper No. 2015-26642
.
7.
Rodgers
,
C.
,
1991
, “
Centrifugal Compressor Inlet Guide Vanes for Increased Surge Margin
,”
ASME J. Turbomach.
,
113
(
4
), pp.
696
702
.
8.
Brasz
,
J. J.
,
1996
, “
Aerodynamics of Rotatable Inlet Guide Vanes for Centrifugal Compressors
,”
Int. Compressor Eng. Conf.
, Paper 1196.
9.
Mohseni
,
A.
,
Goldhahn
,
E.
,
Braembussche
,
R. A.
, and
Seume
,
J. R.
,
2011
, “
Novel IGV Designs for Centrifugal Compressors and Their Interaction With the Impeller
,”
ASME J. Turbomach.
,
134
(
2
), p.
021006
.
10.
Van den Braembussche
,
R. A.
,
Prinsier
,
J.
, and
Doulgeris
,
G.
,
Nov. 2006
, “
Design and Performance Evaluation of 3 Different Inlet Guide Vanes for Radial Compressors
,”
von Kármán Institute for Fluid Dynamics
.
11.
Huang
,
L.
,
Liu
,
Y.
, and
Chen
,
H.
,
2015
, “
Inlet Swirl on Turbocharger Compressor Performance
,”
Semantic Scholar Paper
,
Corpus ID: 201911989
.
12.
Sun
,
Q.
,
Ji
,
C.
,
Fang
,
J.
,
Li
,
C.
, and
Zhang
,
X.
,
2017
, “
Optimization Design of IGV Profile in Centrifugal Compressor
,”
Math. Probl. Eng.
,
2017
(
12
), p.
8437325
.
13.
Simon
,
H.
,
Wallmann
,
T.
, and
Mönk
,
T.
,
1987
, “
Improvements in Performance Characteristics of Single-Stage and Multistage Centrifugal Compressors by Simultaneous Adjustments of Inlet Guide Vanes and Diffuser Vanes
,”
ASME J. Turbomach.
,
109
(
1
), pp.
41
47
.
14.
Zheng
,
X.
,
Huang
,
Q.
, and
Liu
,
A.
,
2016
, “
Loss Mechanisms and Flow Control For Improved Efficiency of a Centrifugal Compressor at High Inlet Prewhirl
,”
ASME J. Turbomach.
,
138
(
10
), p.
101011
.
15.
Figurella
,
N.
,
Dehner
,
R.
,
Selamet
,
A.
,
Miazgowicz
,
K.
,
Karim
,
A.
, and
Host
,
R.
,
2015
, “
Effect of Aerodynamically Induced Pre-Swirl on Centrifugal Compressor Acoustics and Performance
”,
SAE Int. J. Passeng. Cars - Mech. Syst.
,
8
(
3
), pp.
995
1002
.
16.
Poujol
,
N.
,
Trébinjac
,
I.
, and
Duquesne
,
P.
,
2020
, “
Effect of Inlet Guide Vanes on the Performance and Stability of an Aeronautical Centrifugal Compressor
,”
ASME Paper No. GT2020-14149
.
17.
Li
,
X.
,
Spence
,
S.
, and
Wu
,
Y.
,
2018
, “
The Interaction Between Inlet Guide Vanes and the Impeller Recirculating Flow in a Centrifugal Compressor and the Resulting Impact on Flow Range
,”
ASME Paper No. GT2018-75097
.
18.
Hildebrandt
,
A.
, and
Ceyrowsky
,
T.
,
2019
, “
One-Dimensional and Three-Dimensional Strategies for Pressure Slope Optimization of High Flow Transonic Centrifugal Compressors
,”
ASME J. Turbomach.
,
141
(
5
), p.
051002
.
19.
Mueller
,
L.
,
Alsalihi
,
Z.
, and
Verstraete
,
T.
,
2012
, “
Multidisciplinary Optimization of a Turbocharger Radial Turbine
,”
ASME J. Turbomach.
,
135
(
2
), p.
021022
.
20.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effect of Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.
21.
Hagelstein
,
D.
,
Prinsier
,
J.
, and
Van den Braembussche
,
R. A.
,
2000
, “
FVV-Vorleitradoptimierung I, Vorhaben Nr. 705, Vorleitrad-Laufrad Strömungsoptimierung und Interaktion
”,
final FVV-report (in German)
.
22.
Conrad
,
O.
,
Raif
,
K.
, and
Wessels
,
M.
,
1980
, “
The Calculation of Performance Maps for Centrifugal Compressors with Vane-Island Diffusers
,”
ASME Twenty-Fifth Annual IGTC and Twenty-Second Annual Fluids Engineering Conference on Performance Prediction of Centrifugal Pumps and Compressors
,
New Orleans, LA
.
23.
Japikse
,
D.
,
1996
,
Centrifugal Compressor Design and Performance
,
Concepts ETI
.
24.
Tamaki
,
H.
,
2017
, “
Experimental Study on the Effect of Diffuser Vane Setting Angle on Centrifugal Compressor Performance
,”
ASME J. Turbomach.
,
139
(
6
), p.
061001
.
25.
Filipenco
,
V. G.
,
Deniz
,
S.
,
Johnston
,
J. M.
,
Greitzer
,
E. M.
, and
Cumpsty
,
N. A.
,
1998
, “
Effects of Inlet Flow Field Conditions on the Performance of Centrifugal Compressor Diffusers
,”
ASME J. Turbomach.
,
122
(
1
), pp.
1
10
.
Part 1: Discrete-Passage Diffusers
.
26.
Tomita
,
I.
,
Ibaraki
,
S.
,
Wakashima
,
K.
,
Furukawa
,
M.
,
Yamada
,
K.
, and
Kanzaki
,
D.
,
2015
, “
Effects of Flow Path Height of Impeller Exit and Diffuser on Flow Fields in a Transonic Centrifugal Compressor
,”
ASME Paper No. GT2015-43271
.
27.
Stuart
,
C.
,
Spence
,
S.
,
Filsinger
,
D.
,
Startke
,
A.
, and
Kim
,
S.
,
2017
, “
Characterizing the Influence of Impeller Exit Recirculation on Centrifugal Compressor Work Input
,”
ASME J. Turbomach.
,
140
(
1
), p.
011005
.
28.
Rodgers
,
C.
,
1978
, “
A Diffusion Factor Correlation for Centrifugal Impeller Stalling
,”
ASME Paper No. 78-GT-61
.
29.
Pampreen
,
R. C.
, and
Musgrave
,
D. S.
,
1978
, “
A Method of Calculating the Slip Factor of Centrifugal Compressors From Deviation Angle
,”
ASME J. Eng. Gas Turbines
,
100
(
1
), pp.
121
128
.
30.
Johnston
,
J. P.
, and
Dean
R. C.
, Jr.
,
1966
, “
Losses in Vaneless Diffusers of Centrifugal Compressors and Pumps. Analysis, Experiment, and Design
,”
ASME J. Eng. Power
,
88
(
1
), pp.
49
60
.
31.
Japikse
,
D.
,
1985
, “
Assessment of Single and Two-Zone Modelling of Centrifugal Compressors, Studies in Component Performance: Part3
,”
ASME Paper No. 85-GT-73
.
32.
Eckardt
,
D.
,
1980
, “
Flow Field Analysis of Radial and Backswept Centrifugal Compressor Impellers. Part I: Flow Measurements Using a Laser Velocimeter
,”
ASME Twenty-Second Annual Fluids Engineering Conference on Performance Prediction of Centrifugal Pumps and Compressors
, pp.
77
86
.
33.
Oh
,
H. W.
,
Yoon
,
E. S.
, and
Chung
,
M. K.
,
1997
, “
An Optimum Set of Loss Models for Performance Prediction of Centrifugal Compressors
,”
Proc. Inst. Mech. Eng., Part A
,
211
(
4
), pp.
331
338
.
34.
Hildebrandt
,
A.
, and
Genrup
,
M.
,
2007
, “
Numerical Investigation of the Effect of Different Back Sweep Angle and Exducer Width on the Impeller Outlet Flow Pattern of a Centrifugal Compressor With Vaneless Diffuser
,”
ASME J. Turbomach.
,
129
(
2
), pp.
421
433
.
You do not currently have access to this content.