Abstract

The clearance that exists between the casing and turbine blade tips is one of the key drivers of efficiency in gas turbine engines. For this reason, engine manufacturers utilize precise manufacturing techniques and may use clearance control systems to minimize tip clearances to reduce associated losses. Despite these efforts, turbines typically exhibit some nominal casing ovality or rotor-casing eccentricity, and changes to blade tip clearance during operation commonly occur due to thermal and mechanical stresses. The present study investigates non-axisymmetric tip clearance effects by creating a rotor-casing eccentricity in a one-stage axial test turbine operating in a continuous-duration mode at engine-relevant conditions with engine representative hardware. A magnetic levitation bearing system was leveraged to move the turbine shaft to vary the rotor-casing eccentricity without test section disassembly. The results of this study indicate that rotor-casing eccentricity does not affect overall turbine efficiency over the range that was tested, but does locally influence efficiency and the rotor exit flow field. Comparisons of flow angle and secondary flow kinetic energy (SKE) agreed with previous studies and existing analytical methods, respectively. Collectively, these results indicate that tip clearance can be studied locally on an eccentric rotor.

References

1.
Gupta
,
A.
, and
Bais
,
A. S.
,
2018
, “
Global Market Insights, Gas Turbine Market Growth Statistics
,”
Global Projections Report No. 2024
.
2.
Global Data PLC
,
2018
, “
The Global Commercial Aircraft Market 2018–2028
,” Report No. GD-DF0151SR.
3.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propuls. Power
,
22
(
2
), pp.
271
285
.
4.
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2002
, “
Turbine Engine Clearance Control Systems: Current Practices and Future Directions
,”
38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Indianapolis, IN
,
July 7–10
, p. 3790. AIAA 2002-3790.
5.
Alford
,
J. S.
,
1965
, “
Protecting Turbomachinery From Self-Excited Rotor Whirl
,”
J. Eng. Power
,
87
(
4
), pp.
333
343
.
6.
Vance
,
J. M.
, and
Laudadio
,
F. J.
,
1984
, “
Experimental Measurement of Alford’s Force in Axial Flow Turbomachinery
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
585
590
.
7.
Martinez-Sanches
,
M.
,
Jaroux
,
B.
,
Song
,
S. J.
, and
Yoo
,
S.
,
1995
, “
Measurement of Turbine Blade-Tip Rotordynamic Excitation Forces
,”
ASME J. Turbomach.
,
117
, pp.
384
392
.
8.
Song
,
S. J.
, and
Martinez-Sanchez
,
M.
,
1997
, “
Rotordynamic Forces Due to Turbine Tip Leakage: Part I-Blade Scale Effects
,”
ASME J. Turbomach.
,
119
(
4
), pp.
695
703
.
9.
Song
,
S. J.
, and
Martinez-Sanchez
,
M.
,
1997
, “
Rotordynamic Forces Due to Turbine Tip Leakage: Part II-Radius Scale Effects and Experimental Verification
,”
ASME J. Turbomach.
,
119
(
4
), pp.
704
713
.
10.
Guo
,
Z.
,
Rhode
,
D. L.
, and
Davis
,
F. M.
,
1994
, “
Computed Eccentricity Effects on Turbine rim Seals at Engine Conditions with a Mainstream
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
78835
, p.
V001T01A007
,
American Society of Mechanical Engineers
. 94-GT-31.
11.
Guo
,
Z.
, and
Rhode
,
D. L.
,
1999
, “
Predicted Combined Effects of Purge Flow and Rotor-Casing Eccentricity on Ingress Heating
,”
J. Propuls. Power
,
15
(
3
), pp.
454
461
.
12.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
(
3
), pp.
257
263
.
13.
Peters
,
D. W.
, and
Moore
,
J.
,
1995
, “
Tip Leakage Loss Development in a Linear Turbine Cascade
,”
AGARD-CP-571
, pp.12-1–12-13.
14.
Yaras
,
M.
,
Yingkang
,
Z.
, and
Sjolander
,
S. A.
,
1989
, “
Flow Field in the Tip Gap of a Planar Cascade of Turbine Blade
,”
ASME J. Turbomach.
,
111
(
3
), pp.
276
283
.
15.
Sjolander
,
S. A.
,
1997
, “
Modelling of Tip-Clearance Flow in Axial Turbines
,”
VKI Lecture Series: Secondary and Tip-Clearance Flows in Axial Turbines
, pp.
1
32
.
16.
Morphis
,
G.
, and
Bindon
,
J. P.
,
1994
, “
The Performance of a Low Speed One and a Half Stage Axial Turbine With Varying Rotor Tip Clearance and Tip Gap Geometry
,”
International Gas Turbine and Aeroengine Congress and Exposition
,
The Hague, Netherlands
,
June 13–16
, p. V001T01A152, American Society of Mechanical Engineers, 94-GT-481.
17.
Yoon
,
S.
,
Curtis
,
E.
,
Denton
,
J.
, and
Longley
,
J.
,
2014
, “
The Effect of Clearance on Shrouded and Unshrouded Turbines at Two Levels of Reaction
,”
ASME J. Turbomach.
,
136
(
2
), p.
021013
.
18.
Hong
,
Y. S.
, and
Groh
,
F. G.
,
1966
,
Axial Turbine Loss Analysis and Efficiency Prediction Method
, p.
112
.
19.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1999
, “
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
,”
ASME J. Turbomach.
,
121
(
4
), pp.
683
693
.
20.
Kofsky
,
M. G.
,
1961
, “
Experimental Investigation of Three Tip-Clearance Configurations Over a Range of Tip Clearance Using a Single-Stage Turbine of High Hub-to-Tip Radius Ratio
,”
NASA TM X-472
.
21.
Marshall
,
R.
, and
Rogo
,
C.
,
1968
, “
Experimental Investigation of Low Aspect Ratio and Tip Clearance on Turbine Performance and Aerodynamic Design
,”
Usaavlabs Technical Report 67-80
.
22.
Szanca
,
E. M.
,
Schum
,
H. J.
, and
Hotz
,
G. M.
,
1974
, “
Research Turbine for High Temperature Core Engine Application II—Effect of Rotor Tip Clearance on Overall Performance
,”
NASA TN D-7557
.
23.
Lakshminarayana
,
B.
,
1970
, “
Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachinery
,”
ASME J. Basic Eng.
,
92
(
3
), pp.
467
480
.
24.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1970
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
407
424
.
25.
Booth
,
T. C.
,
1985
, “Importance of Tip Clearance Flows in Turbine Design,” Tip Clearance Effects in Axial Turbomachines, VKI Lecture Series, pp.
1
15
.
26.
Gaetani
,
P.
,
Persico
,
G.
,
Dossena
,
V.
, and
Osnaghi
,
C.
,
2007
, “
Investigation of the Flow Field in a High-Pressure Turbine Stage for Two Stator-Rotor Axial Gaps—Part II: Unsteady Flow Field
,”
ASME J. Turbomach.
,
129
(
3
), pp.
580
590
.
27.
Behr
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2008
, “
Control of Rotor Tip Leakage Through Cooling Injection From the Casing in a High-Work Turbine
,”
ASME J. Turbomach.
,
130
(
3
), p.
031014
.
28.
Barringer
,
M. D.
,
Coward
,
A.
,
Clark
,
K. P.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
GT2014-25570
.
29.
Berdanier
,
R. A.
,
DeShong
,
E.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2021
, “
Evaluating the Effects of Transient Purge Flow on Stator-Rotor Seal Performance
,”
ASME J. Turbomach.
,
143
(
2
), p.
021006
.
30.
Pfau
,
A.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2003
, “
Unsteady, 3-Dimensional Flow Measurement Using a Miniature Virtual 4 Sensor Fast Response Aerodynamic Probe (FRAP)
,”
Proceedings of ASME Turbo Expo 2003
,
Atlanta, GA
,
June 16–19
, Vol. 36843, pp. 307–315, Paper No. GT2003-38128.
31.
Kupferschmied
,
P.
,
Köppel
,
P.
,
Gizzi
,
W.
,
Roduner
,
C.
, and
Gyarmathy
,
G.
,
2000
, “
Time-Resolved Flow Measurements With Fast-Response Aerodynamic Probes in Turbomachines
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
1036
1054
.
32.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2014
,
Theory and Design for Mechanical Measurements
,
John Wiley & Sons
,
New York
.
33.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
,
2006
, “
Averaging Nonuniform Flow for a Purpose
,”
ASME J. Turbomach.
,
128
(
1
), pp.
120
129
.
34.
Clark
,
K.
,
Barringer
,
M.
,
Johnson
,
D.
,
Thole
,
K.
,
Grover
,
E.
, and
Robak
,
C.
,
2018
, “
Effects of Purge Flow Configuration on Sealing Effectiveness in a Rotor-Stator Cavity
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
112502
.
35.
Day
,
I. J.
,
1993
, “
Active Suppression of Rotating Stall and Surge in Axial Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
40
47
.
36.
Kaiser
,
I.
, and
Bindon
,
J. P.
,
1997
, “
The Effect of Tip Clearance on the Development of Loss Behind a Rotor and a Subsequent Nozzle
,”
International Gas Turbine & Aeroengine Congress & Exhibition
,
Orlando, FL
,
June 2–5
, Vol. 78682, p. V001T03A011, American Society of Mechanical Engineers, Paper No. 97-GT-53.
37.
Rains
,
D. A.
,
1954
, “
Tip Clearance Flows in Axial Flow Compressors and Pumps
,”
Report No. 5
.
38.
Lakshminarayana
,
B.
,
1995
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
John Wiley & Sons
,
New York
.
39.
Lewis
,
R. I.
, and
Yeung
,
E. H. C.
,
1977
, “
Vortex Shedding Mechanisms in Relation to Tip Clearance Flows and Losses in Axial Flow Fans
,”
Aeronautical Research Council
,
R&M No. 3829
.
You do not currently have access to this content.