Abstract

The use of purge flow in gas turbines allows for high turbine entry temperatures, which are essential to produce high cycle efficiency. Purge air is bled from the compressor and reintroduced in the turbine to cool vulnerable components. Wheel-spaces are formed between adjacent rotating and stationary discs, with purge air supplied at low radius before exiting into the mainstream gas-path through a rim-seal at the disc periphery. An aerodynamic penalty is incurred as the purge flow egress interacts with the mainstream. This study presents unparalleled three-dimensional velocity data from a single-stage turbine test rig, specifically designed to investigate egress–mainstream interaction using optical measurement techniques. Volumetric velocimetry is applied to the rotating environment with phase-locked measurements used to identify and track the vortical secondary flow features through the blade passage. A baseline case without purge flow is compared to experiments with a 1.7% purge mass fraction; the latter was chosen to ensure a fully sealed wheel-space. A non-localized vortex tracking function is applied to the data to identify the position of the core centroids. The strength of the secondary flow vortices was determined using a circulation criterion on rotated planes aligned to the vortex filaments. The pressure-side leg of the horseshoe vortex and a second vortex associated with the egress flow were identified by the experimental campaign. In the absence of purge flow, the two vortices merged, forming the passage vortex (PV). With the addition of purge flow, the two cores remained independent to 40% of the blade axial chord, while also demonstrating an increased radial migration and intensification of the PV. The egress core was shown to remain closer to the suction-surface with purge flow. Importantly, where the vortex filaments demonstrated strong radial or tangential components of velocity, the circulation level calculated from axial planes underpredicted the true circulation by up to 50%.

References

1.
Schreiner
,
B. D. J.
,
Wilson
,
M.
,
Li
,
Y. S.
, and
Sangan
,
C. M.
,
2020
, “
Effect of Purge on the Secondary Flow-Field of a Gas Turbine Blade-Row
,”
ASME J. Turbomach.
,
142
(
10
), p.
101006
.
2.
Carvalho Figueiredo
,
A. J.
,
Schreiner
,
B. D. J.
,
Mesny
,
A. W.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Li
,
Y. S.
,
Cleaver
,
D. J.
, and
Sangan
,
C. M.
,
2021
, “
Volumetric Velocimetry Measurements of Purge-Mainstream Interaction in a 1-Stage Turbine
,”
ASME J. Turbomach.
,
143
(
4
), p.
041011
.
3.
de la Rosa Blanco
,
E.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
,
2009
, “
Effect of the Leakage Flows and the Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade
,”
ASME J. Turbomach.
,
131
(
1
), p.
011004
.
4.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
,
Maritano
,
M.
, and
Abram
,
R.
,
2013
, “
Purge Flow and Interface Gap Geometry Influence on the Aero-Thermal Performance of a Rotor Blade Cascade
,”
Int. J. Heat Fluid Flow
,
44
(
1
), pp.
563
575
.
5.
Popovic
,
I.
, and
Hodson
,
H. P.
,
2013
, “
Aerothermal Impact of the Interaction Between Hub Leakage and Mainstream Flows in Highly-Loaded High Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
061014
.
6.
Schneider
,
C. M.
,
Schrack
,
D.
,
Rose
,
M. G.
,
Staudacher
,
S.
,
Guendogdu
,
Y.
, and
Engel
,
K.
,
2014
, “
On the Interaction of Streamwise Vorticity With a Rotating Turbine Blade
,”
10th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics (ETC10))
,
Lappeenranta, Finland
,
Apr. 15–19
, 2013, pp.
24
35
.
7.
Schrewe
,
S.
,
Werschnik
,
H.
, and
Schiffer
,
H.-P.
,
2013
, “
Experimental Analysis of the Interaction Between Rim Seal and Main Annulus Flow in a Low Pressure Two Stage Axial Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051003
.
8.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
.
9.
Regina
,
K.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2015
, “
Experimental Investigation of Purge Flow Effects on a High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
137
(
4
), p.
041006
.
10.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), p.
1422
.
11.
Morgan
,
C.
,
Babinsky
,
H.
, and
Harvey
,
J.
,
2009
, “
Vortex Detection Methods for Use With PIV and CFD Data
,”
Proceedings of the 47th AIAA Aerospace Sciences Meeting
,
Orlando, FL
,
Jan. 5–8
, p.
74
.
12.
Simpson
,
C. E.
,
Babinsky
,
H.
,
Harvey
,
J. K.
, and
Corkery
,
S.
,
2018
, “
Detecting Vortices Within Unsteady Flows When Using Single-Shot PIV
,”
Exp. Fluids
,
59
(
8
), p.
125
.
13.
Jones
,
R. R.
,
Pountney
,
O. J.
,
Cleton
,
B. L.
,
Wood
,
L. E.
,
Deneys
,
J.
,
Schreiner
,
B.
,
Carvalho Figueiredo
,
A. J.
, et al
,
2019
, “
An Advanced Single-Stage Turbine Facility for Investigating Nonaxisymmetric Contoured Endwalls in the Presence of Purge Flow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121008
.
14.
Tropea
,
C.
,
Yarin
,
A. L.
, and
Foss
,
J. F.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
, 1st ed.,
Springer Science & Business Media
,
Berlin
.
15.
Carvalho Figueiredo
,
A. J.
,
Jones
,
R. R.
,
Sangan
,
C. M.
, and
Cleaver
,
D. J.
,
2020
, “
A Borescope Design Tool for Laser Measurements in Fluids
,”
J. Opt. Lasers Eng.
,
127
, p.
105874
.
16.
Carvalho Figueiredo
,
A. J.
,
Jones
,
R.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Lock
,
G. D.
,
Sangan
,
C. M.
, and
Cleaver
,
D. J.
,
2018
, “
Volumetric Velocimetry Measurements of Film Cooling Jets
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031021
.
17.
Stellmacher
,
M.
, and
Obermayer
,
K.
,
2000
, “
A New Particle Tracking Algorithm Based on Deterministic Annealing and Alternative Distance Measures
,”
Exp. Fluids
,
28
(
6
), pp.
506
518
.
You do not currently have access to this content.