Abstract

This work presents the aerodynamic topology optimization of high-pressure turbine rotor blade tips. Before carrying out the topology optimization on the blade tip, some initial tip design studies were carried out. A winglet tip was optimized first and it was found that the optimum winglet design features a combination of small and largest overhangs possible that increase the aerodynamic efficiency by 1.40% compared to the datum design. Second, a radial basis function-based parametrization was set up to allow the creation of a single squealer rim on the datum blade’s tip that could move position in the circumferential direction. The optimum case proved to increase efficiency by 0.46% compared to the flat datum tip of the same tip gap. After that, a combination of winglet and topology free squealer tips was investigated via topology optimization. The winglet tip was created as in the winglet-only optimization cases and topology free squealer walls were parametrized and created using mapping of a radial basis function surface. It was shown that the radial basis function surface-based parametrization creates a very flexible design space containing novel squealer topologies. Combining both winglet and novel squealer topology optimization, better designs than the flat tip winglet can be achieved. However, because of the flexibility of the design space, gradient-based methods were found to struggle to reach an optimum solution. This was resolved by optimizing the most promising design subspace.

References

1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
3.
Coull
,
J. D.
, and
Atkins
,
N. R.
,
2015
, “
The Influence of Boundary Conditions on Tip Leakage Flow
,”
ASME J. Turbomach.
,
137
(
6
), p.
061005
.
4.
Vass
,
P.
, and
Arts
,
T.
,
2011
, “
Numerical Investigation of High-Pressure Turbine Blade Tip Flows: Analysis of Aerodynamics
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
225
(
7
), pp.
940
953
.
5.
Pátý
,
M.
,
Cernat
,
B. C.
,
Maesschalck
,
C. D.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade tip Shapes-Part ii:tip Flow Analysis and Loss Mechanisms
,”
ASME J. Turbomach.
,
141
(
1
), p.
011007
.
6.
Li
,
J.
,
Du
,
K.
, and
Song
,
L.
,
2016
, “
Effects of tip Cavity Geometries on the Aerothermal Performance of the Transonic Turbine Blade With Cavity Tip
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
230
(
3
), pp.
319
331
.
7.
Du
,
K.
,
Li
,
Z.
,
Li
,
J.
, and
Sunden
,
B.
,
2019
, “
Influences of a Multi-Cavity Tip on the Blade tip and the Over Tip Casing Aerothermal Performance in a High Pressure Turbine Cascade
,”
Appl. Therm. Eng.
,
147
, pp.
347
360
.
8.
Schabowski
,
Z.
, and
Hodson
,
H.
,
2014
, “
The Reduction of Over Tip Leakage Loss in Unshrouded Axial Turbines Using Winglets and Squealers
,”
ASME J. Turbomach.
,
136
(
4
), p.
041001
.
9.
Coull
,
J. D.
,
Atkins
,
N. R.
, and
Hodson
,
H. P.
,
2014
, “
Winglets for Improved Aerothermal Performance of High Pressure Turbines
,”
ASME J. Turbomach.
,
136
(
9
), p.
091007
.
10.
Coull
,
J. D.
,
Atkins
,
N. R.
, and
Hodson
,
H. P.
,
2014
, “
High Efficiency Cavity Winglets for High Pressure Turbines
,”
Turbomachinery of Turbo Expo: Power for Land, Sea, and Air
,
Düsseldorf, Germany
,
June 16–20
.
11.
Caloni
,
S.
,
Shahpar
,
S.
, and
Coull
,
J. D.
,
2016
, “
Numerical Investigations of Different Tip Designs for Shroudless Turbine Blades
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
230
(
7
), pp.
709
720
.
12.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2014
, “
Blade Tip Shape Optimization for Enhanced Turbine Aerothermal Performance
,”
ASME J. Turbomach.
,
136
(
4
), p.
041016
.
13.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2016
, “
Heterogeneous Optimization Strategies for Carved and Squealer-Like Turbine Blade Tips
,”
ASME J. Turbomach.
,
138
(
12
), p.
121011
.
14.
Andreoli
,
V.
,
Braun
,
J.
,
Paniagua
,
G.
,
De Maesschalck
,
C.
,
Bloxham
,
M.
,
Cummings
,
W.
, and
Langford
,
L.
,
2019
, “
Aerothermal Optimization of Fully Cooled Turbine Blade Tips
,”
ASME J. Turbomach.
,
141
(
6
), p.
061007
.
15.
Milli
,
A.
, and
Shahpar
,
S.
,
2012
, “
PADRAM: Parametric Design and Rapid Meshing System for Complex Turbomachinery Configurations
,”
Turbomachinery, Parts A, B, and C of Turbo Expo: Power for Land, Sea, and Air
,
Copenhagen, Denmark
,
June 11–15
.
16.
Mimic—Computer Aided Surface Manipulation and Mesh Morphing, http://www.optimad.it/products/mimic/, Accessed November 15, 2019.
17.
OPTIMAD
, http://www.optimad.it/, Accessed January 27, 2019.
18.
Beard
,
P. F.
,
Povey
,
T.
, and
Chana
,
K. S.
,
2009
, “
Turbine Efficiency Measurement System for the QinetiQ Turbine Test Facility
,”
ASME J. Turbomach.
,
132
(
1
), p.
011002
.
19.
Lapworth
,
L.
, and
Shahpar
,
S.
,
2004
, “
Design of Gas Turbine Engines Using CFD
,”
Proceedings of the ECCOMAS
,
Jyväskylä, Finland
,
July 24–28
.
20.
Demargne
,
A. A.
,
Evans
,
R.
,
Tiller
,
P.
, and
Dawes
,
W. N.
,
2014
, “
AIAA SciTech Forum
,”
52nd Aerospace Sciences Meeting
,
National Harbor, MD
,
Jan. 13–17
.
21.
Beard
,
P. F.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2011
, “
Experimental and Computational Fluid Dynamics Investigation of the Efficiency of an Unshrouded Transonic High Pressure Turbine
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
225
(
8
), pp.
1166
1179
.
22.
Salvadori
,
S.
,
Montomoli
,
F.
,
Martelli
,
F.
,
Adami
,
P.
,
Chana
,
K. S.
, and
Castillon
,
L.
,
2011
, “
Aerothermal Study of the Unsteady Flow Field in a Transonic Gas Turbine With Inlet Temperature Distortions
,”
ASME J. Turbomach.
,
133
(
3
), p.
031030
.
23.
Salvadori
,
S.
,
Montomoli
,
F.
,
Martelli
,
F.
,
Chana
,
K. S.
,
Qureshi
,
I.
, and
Povey
,
T.
,
2011
, “
Analysis on the Effect of a Nonuniform Inlet Profile on Heat Transfer and Fluid Flow in Turbine Stages
,”
ASME J. Turbomach.
,
134
(
1
), p.
011012
.
24.
Zhang
,
Q.
,
O’Dowd
,
D.
,
He
,
L.
,
Oldfield
,
M.
, and
Ligrani
,
P.
,
2011
, “
Transonic Turbine Blade tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
25.
Shahpar
,
S.
,
2005
, “SOPHY: An Integrated CFD Based Automatic Design Optimisation System”. ROLLS ROYCE PLCREPORT-PNR, 93022.
26.
Polynkin
,
A.
,
Toropov
,
V.
, and
Shahpar
,
S.
,
2008
, “
Adaptive and Parallel Capabilities in the Multipoint Approximation Method
,”
Proceedings of the AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, no. AIAA-2 in Conference Proceeding Series, AIAA.
,
Victoria, British Columbia, Canada
,
Sept. 10–12
.
27.
Caloni
,
S.
,
Shahpar
,
S.
, and
Toropov
,
V.
,
2018
, “
Multidisciplinary Design Optimisation of the Cooled Squealer Tip for High Pressure Turbines
,”
Aerospace
,
5
(
4
), p.
116
.
28.
Shahpar
,
S.
,
2002
, “SOFT: A New Design And Optimisation Tool for Turbomachinery,”
Evolutionary Methods for Design, Optimisation and Control
,
K.
Ginnakoglou
,
D.
Tsahalis
,
J.
Periaux
,
K.
Papailiou
, and
T.
Fogarty
, eds.,
CIMNE
,
Barcelona, Spain
.
29.
Obayashi
,
S.
, and
Sasaki
,
D.
,
2004
, “
Multi-Objective Optimization for Aerodynamic Designs by Using Armogas
,”
Proceedings. Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region
,
Tokyo, Japan
,
July 22
, pp.
396
403
.
You do not currently have access to this content.