Abstract

One of the most effective ways to cool the combustor liner is through effusion cooling. Effusion cooling (also known as full-coverage effusion cooling) involves uniformly spaced holes distributed throughout the combustor liner wall. Effusion cooling configurations are preferred for their high effectiveness, low-pressure penalty, and ease of manufacturing. In this article, experimental results are presented for effusion cooling configurations for a realistic swirl driven can combustor under reacting (flame) conditions. The can combustor was equipped with an industrial engine swirler and gaseous fuel (methane), subjecting the liner walls to engine representative flow and combustion conditions. In this study, three different effusion cooling liners with spanwise spacings of r/d = 6, 8, and 10 and streamwise spacing of z/d = 10 were tested for four coolant-to-main airflow ratios. The experiments were carried out at a constant main flow Reynolds number (based on combustor diameter) of 12,500 at a total equivalence ratio of 0.65. Infrared thermography (IRT) was used to measure the liner outer surface temperature, and detailed overall effectiveness values were determined under steady-state conditions. The results indicate that decreasing the spanwise hole-to-hole spacing (r/d) from ten to eight increased the overall cooling effectiveness by 2–5%. It was found that reducing the spanwise hole-to-hole spacing further to r/d = 6 does not affect the cooling effectiveness implying the existence of an optimum spanwise hole-to-hole spacing. Also, the minimum liner cooling effectiveness on the liner wall was found to be downstream of the impingement location, which is not observed in the existing literature for experiments done under nonreacting conditions.

References

1.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
,
CRC Press
, Boca Raton, FL.
2.
Myers
,
G.
,
Van der Geest
,
J.
,
Sanborn
,
J.
, and
Davis
,
F.
,
1985
, “
Comparison of Advanced Cooling Concepts Using Color Thermography
,”
21st Joint Propulsion Conference
,
Monterey, CA
,
July 8–11
, p.
1289
.
3.
Krewinkel
,
R.
,
2013
, “
A Review of Gas Turbine Effusion Cooling Studies
,”
Int. J. Heat Mass Transfer
,
66
, pp.
706
722
.
4.
Andrews
,
G. E.
,
Khalifa
,
I. M.
,
Asere
,
A. A.
, and
Bazdidi-Tehrani
,
F.
,
1995
, “
Full Coverage Effusion Film Cooling With Inclined Holes
,”
Turbo Expo: Power for Land, Sea, and Air
,
Houston, TX
,
June 5–8, Vol. 78811, American Society of Mechanical Engineers, p. V004T09A045
.
5.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Gupta
,
M. L.
, and
Mkpadi
,
M. C.
,
1985
, “
Full Coverage Discrete Hole Film Cooling: The Influence of Hole Size
,”
Proceedings of the ASME 1985 International Gas Turbine Conference and Exhibit. Volume 3: Heat Transfer; Electric Power
,
Houston, TX
,
Mar. 18–21
, p.
V003T09A003
.
6.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Gupta
,
M. L.
, and
Mkpadi
,
M. C.
,
1985
, “
Full Coverage Discrete Hole Film Cooling: the Influence of Hole Size
,”
Turbo Expo: Power for Land, Sea, and Air
,
Houston, TX
,
Mar. 18–21
, vol. 79405, American Society of Mechanical Engineers, p. V003T09A003.
7.
Harrington
,
M. K.
,
McWaters
,
M. A.
,
Bogard
,
D. G.
,
Lemmon
,
C. A.
, and
Thole
,
K. A.
,
2001
, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME J. Turbomach.
,
123
(
4
), pp.
798
805
.
8.
Ligrani
,
P.
,
Goodro
,
M.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2012
, “
Full-Coverage Film Cooling: Film Effectiveness and Heat Transfer Coefficients for Dense and Sparse Hole Arrays at Different Blowing Ratios
,”
ASME J. Turbomach.
,
134
(
6
), p.
061039
.
9.
Behrendt
,
T.
, and
Hassa
,
C.
,
2008
, “
A Test Rig for Investigations of Gas Turbine Combustor Cooling Concepts Under Realistic Operating Conditions
,”
Proc. Inst. Mech. Eng., Part G
,
222
(
2
), pp.
169
177
.
10.
Behrendt
,
T.
,
Lengyel
,
T.
,
Hassa
,
C.
, and
Gerendás
,
M. S.
,
2008
, “
Characterization of Advanced Combustor Cooling Concepts Under Realistic Operating Conditions
,”
Turbo Expo: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
, Vol. 43147, pp.
1801
1814
.
11.
Wurm
,
B.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2009
, “
A New Test Facility for Investigating the Interaction Between Swirl Flow and Wall Cooling Films in Combustors
,”
Turbo Expo: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, Vol. 48845, pp.
1397
1408
.
12.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Gerendas
,
M.
,
2014
, “
Impact of Swirl Flow on the Penetration Behaviour and Cooling Performance of a Starter Cooling Film in Modern Lean Operating Combustion Chambers
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, p. V05CT18A007.
13.
Andrei
,
L.
,
Andreini
,
A.
,
Bianchini
,
C.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2014
, “
Effusion Cooling Plates for Combustor Liners: Experimental and Numerical Investigations on the Effect of Density Ratio
,”
Energy Procedia
,
45
, pp.
1402
1411
.
14.
Kakade
,
V. U.
,
Thorpe
,
S. J.
, and
Gerendás
,
M.
,
2012
, “
Effusion-Cooling Performance at Gas Turbine Combustor Representative Flow Conditions
,”
Turbo Expo: Power for Land, Sea, and Air
,
Copenhagen, Denmark
,
June 11–15
, Vol. 44700, American Society of Mechanical Engineers, pp.
857
869
.
15.
Ge
,
B.
,
Ji
,
Y.
,
Chi
,
Z.
, and
Zang
,
S.
,
2017
, “
Effusion Cooling Characteristics of a Model Combustor Liner at Non-Reacting/Reacting Flow Conditions
,”
Appl. Therm. Eng.
,
113
, pp.
902
911
.
16.
Ji
,
Y.
,
Ge
,
B.
,
Chi
,
Z.
, and
Zang
,
S.
,
2018
, “
Overall Cooling Effectiveness of Effusion Cooled Annular Combustor Liner at Reacting Flow Conditions
,”
Appl. Therm. Eng.
,
130
, pp.
877
888
.
17.
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Coutandin
,
D.
,
2010
, “
Combined Effect of Slot Injection, Effusion Array and Dilution Hole on the Heat Transfer Coefficient of a Real Combustor Liner: Part 1—Experimental Analysis
,”
Turbo Expo: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, Vol. 43994, pp.
753
762
.
18.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2005
, “
Experimental Characterization of Film-Cooling Effectiveness Near Combustor Dilution Holes
,”
Turbo Expo: Power for Land, Sea, and Air
,
Reno, NV
,
June 6–9
, Vol. 47268, pp.
1339
1347
.
19.
Sasaki
,
M.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
M.
,
1979
, “
Film Cooling Effectiveness for Injection From Multirow Holes
,”
ASME. J. Eng. Power
,
101
(
1
), pp.
101
108
.
20.
Leger
,
B.
,
Miron
,
P.
, and
Emidio
,
J. M.
,
2003
, “
Geometric and Aero-Thermal Influences on Multiholed Plate Temperature: Application on Combustor Wall
,”
Int. J. Heat Mass Transfer
,
46
(
7
), pp.
1215
1222
.
21.
Rogers
,
N.
,
Ren
,
Z.
,
Buzzard
,
W.
,
Sweeney
,
B.
,
Tinker
,
N.
,
Ligrani
,
P.
,
Hollingsworth
,
K.
,
Liberatore
,
F.
,
Patel
,
R.
, and
Moon
,
H. K.
,
2016
, “
Effects of Double Wall Cooling Configuration and Conditions on Performance of Full Coverage Effusion Cooling
,”
Turbo Expo: Power for Land, Sea, and Air
,
Seoul, South Korea
,
June 13–17
, Vol. 49781, American Society of Mechanical Engineers, p. V05AT13A005.
22.
Motheau
,
E.
,
Lederlin
,
T.
,
Florenciano
,
J. L.
, and
Bruel
,
P.
,
2012
, “
LES Investigation of the Flow Through an Effusion-Cooled Aeronautical Combustor Model
,”
Flow Turbul. Combust.
,
88
(
1–2
), pp.
169
189
.
23.
Gomez-Ramirez
,
D.
,
Kedukodi
,
S.
,
Ekkad
,
S. V.
,
Moon
,
H. K. X.
,
Kim
,
Y.
, and
Srinivasan
,
R.
,
2017
, “
Investigation of Isothermal Convective Heat Transfer in an Optical Combustor With a Low-Emissions Swirl Fuel Nozzle
,”
Appl. Therm. Eng.
,
114
, pp.
65
76
.
24.
Park
,
S.
,
Gomez-Ramirez
,
D.
,
Gadiraju
,
S.
,
Kedukodi
,
S.
,
Ekkad
,
S. V.
,
Moon
,
H. K.
,
Kim
,
Y.
, and
Srinivasan
,
R.
,
2018
, “
Flow Field and Wall Temperature Measurements for Reacting Flow in a Lean Premixed Swirl Stabilized Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
091503
.
25.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
26.
Gomez-Ramirez
,
D.
,
Ekkad
,
S. V.
,
Moon
,
H. K.
,
Kim
,
Y.
, and
Srinivasan
,
R.
,
2017
, “
Isothermal Coherent Structures and Turbulent Flow Produced by a Gas Turbine Combustor Lean Premixed Swirl Fuel Nozzle
,”
Exp. Therm. Fluid. Sci.
,
81
, pp.
187
201
.
You do not currently have access to this content.