Abstract

The approach applied in various research papers that model compressor shock losses is valid only for certain types of airfoil cascades operating in a narrow range of working conditions. Lately, more general shock loss models have been established that cover a wider variety of airfoils and operating regimes. However, owing to the complexity of the studied matter, the majority of such models are, to a certain extent, presented only in a descriptive manner. The lack of specific details can affect the end results when such a model is utilized since improvisation cannot be avoided. Some models also apply complex numerical procedures that can slow the calculations and be a source of computational instability. In this research, an attempt has been made to produce an analytical shock loss model that is simple enough to be described in detail while being universal and robust enough to find wide application in the fields of design and performance analysis of transonic compressors and fans. The flexible description of airfoil geometry encompasses a variety of blade shapes. Both unchoked and choked operating regimes are covered, including a precise prediction of choke occurrence. The model was validated using a number of numerical test cases.

References

1.
Miller
,
G. R.
,
Lewis
,
G. W.
, and
Hartmann
,
M. J.
,
1961
, “
Shock Losses in Transonic Compressor Blade Rows
,”
ASME J. Eng. Power
,
83
(
3
), pp.
235
241
.
2.
Schwenk
,
F. C.
,
Lewis
,
G. W.
, and
Hartmann
,
M. J.
,
1957
, “A Preliminary Analysis of the Magnitude of Shock Losses in Transonic Compressors,” NACA Report, RM E57A30.
3.
Miller
,
G. R.
, and
Hartmann
,
M. J.
,
1958
, “Experimental Shock Configurations and Shock Losses in a Transonic-Compressor Rotor at Design Speed,” NACA Report, RM E58A14b.
4.
Moeckel
,
W. E.
,
1949
, “Approximate Method for Predicting Form and Location of Detached Shock Waves Ahead of Plane or Axially Symmetric Bodies,” NACA Report, TN 1921.
5.
Klapproth
,
J. F.
,
1950
, “Approximate Relative-Total-Pressure Losses of an Infinite Cascade of Supersonic Blades With Finite Leading-Edge Thickness,” NACA Report, EM E9L21.
6.
Bloch
,
G. S.
,
Copenhaver
,
W. W.
, and
O’Brien
,
W. F.
,
1999
, “
A Shock Loss Model for Supersonic Compressor Cascades
,”
ASME J. Turbomach.
,
121
(
1
), pp.
28
35
.
7.
Schobeiri
,
M. T.
,
1998
, “
Shock-Loss Model for Transonic and Supersonic Axial Compressors With Curved Blades
,”
J. Propul. Power
,
14
(
4
), pp.
470
478
.
8.
Boyer
,
K. M.
, and
O’Brien
,
W. F.
,
2003
, “
An Improved Streamline Curvature Approach for Off-Design Analysis of Transonic Axial Compression Systems
,”
ASME J. Turbomach.
,
125
(
3
), pp.
475
481
.
9.
Koenig
,
W. M.
,
Hennecke
,
D. K.
, and
Fottner
,
L.
,
1994
, “Improved Blade Profile Loss and Deviation Angle Models for Advanced Transonic Compressor Bladings: Part I—A Model for Subsonic Flow,” ASME Paper No. 94-GT-335.
10.
Aguirre
,
H. A.
,
Pachidis
,
V.
, and
Templalexis
,
I.
,
2019
, “An Analytical Shock-Loss Model Fully Integrated to a Streamline Curvature Method for Axial-Flow Compressors,” ASME Paper No. GT2019-91701.
11.
Lichtfuss
,
H. J.
, and
Starken
,
H.
,
1974
, “
Supersonic Cascade Flow
,”
Prog. Aerosp. Sci.
,
15
, pp.
37
149
.
12.
Moore
,
R. D.
, and
Reid
,
L.
,
1980
, “Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26 Respectively, and With Design Pressure Ratio of 2.05,” NASA Report, NASA-TP-1659.
13.
Urasek
,
D. C.
,
Gorrell
,
W. T.
, and
Cunnan
,
W. S.
,
1979
, “Performance of Two-Stage Fan Having Low-Aspect-Ratio, First-Stage Rotor Blading,” NASA Report, TP-1493.
14.
Fellerhoff
,
J.
,
2010
, “Entwicklung eines parametrischen Profilgenerators zur Beschreibung von 2-D Profilschnit-Ten in Turbomaschinenbeschaufelungen,” Semester thesis, Institute for Flight Propulsion, Technische Universitaet, Muenchen.
15.
Aungier
,
R. H.
,
2003
,
Axial-Flow Compressors, A Strategy for Aerodynamic Design and Analysis
,
ASME Press
,
New York
.
16.
Lieblein
,
S.
,
1965
, “Experimental Flow in Two-Dimensional Cascades,”
Aerodynamic Design of Axial-Flow Compressors
,
I. A.
,
Johnsen
, and
R. O.
,
Bullock
, eds., Vol. SP-36, NACA Report, pp.
183
225
.
17.
Taylor
,
W. E.
,
Murrin
,
T. A.
, and
Colombo
,
R. M.
,
1970
, “Systematic Two-Dimensional Cascade Tests, 2. Multiple Circular Arc Hydrofoils,” NASA Report, CR-72499.
18.
Drela
,
M.
, and
Youngren
,
H.
,
1998
,
A User’s Guide to MISES
,
MIT Computational Aerospace Sciences Laboratory
,
Cambridge
, MA.
19.
Jansen
,
W.
, and
Moffat
,
W. C.
,
1967
, “
The Off-Design Analysis of Axial-Flow Compressors
,”
ASME J. Eng. Power
,
89
(
4
), pp.
453
462
.
20.
Lieblein
,
S.
,
1959
, “
Loss and Stall Analysis of Compressor Cascades
,”
ASME J. Basic Eng.
,
81
(
3
), pp.
387
400
.
21.
Ames Research Staff
,
1953
, “Equations, Tables and Charts for Compressible Flow,” NACA Report, NACA 1135.
22.
Hall
,
I. M.
,
1975
, “
Inversion of the Prandtl–Meyer Relation
,”
Aeronaut. J.
,
79
(
777
), pp.
417
418
.
23.
Schnoes
,
M.
,
2020
,
“Eine Auslegungsmethodik fuer mehrstufige Axialverdichter auf Basis einer Profildatenbank
,” Ph.D. thesis,
Fakultaet fuer Maschinenbau, der Ruhr-Universitaet
,
Bochum
.
24.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman
,
Harlow
.
25.
Levine
,
P.
,
1956
, “Two Dimensional Inflow Conditions for a Supersonic Compressor With Curved Blades,” Aeronautical Research Laboratory, WADC TR 55-387.
26.
Casey
,
M.
, and
Robinson
,
C.
,
2010
, “
A New Streamline Curvature Throughflow Method for Radial Turbomachinery
,”
ASME J. Turbomach.
,
132
(
3
), p.
031021
.
You do not currently have access to this content.