Abstract

Gas turbine engine design requires considerations not only for long-term steady operation but also for critical transient events. Aircraft engines undergo significant stress during takeoff and landing, while power generation turbines must be flexible for hot restarts as renewable energy sources come online and offline. During these transient cycles, engines sustain wear and degradation that can lead to a reduction in the lifespan of their components and more frequent, costly maintenance. Cooling flows are often used to mitigate these effects, but can lead to complex and problematic flow interactions. This study uses high-frequency response pressure probes and heat flux gauges in the rim seal cavity of a one-stage research turbine to characterize the properties of large-scale flow structures during transient operation. A continuous-duration turbine testing facility provides the ability to assess the importance of these transients by first reaching steady-state operation before imposing transient behaviors. Although previous studies have conducted similar measurements for steady purge flows and wheel speeds, varying these parameters to simulate transient effects revealed several unique phenomena not identifiable with discrete steady measurements. The measurement approach connects the varied transient parameter to the behavior of the flow structures to enable a better understanding of the type of instability observed and the root cause of its formation. In particular, a relationship between instability cell formation and rim sealing effectiveness was identified using experimental data and was supported through computational simulations.

References

1.
Meher-Homji
,
C.
, and
Bhargarva
,
R.
,
1994
, “
Condition Monitoring and Diagnostic Aspects of Gas Turbine Transient Response
,”
Int. J. Turbo Jet Eng.
,
11
(
1
), pp.
99
111
.
2.
Tona
,
C.
,
Raviolo
,
P. A.
,
Pellegrini
,
L. F.
, and
de Oliveira Júnior
,
S.
,
2010
, “
Exergy and Thermoeconomic Analysis of a Turbofan Engine During a Typical Commercial Flight
,”
Energy
,
35
(
2
), pp.
952
959
.
3.
Denholm
,
P.
,
O’Connell
,
M.
,
Brinkman
,
G.
, and
Jorgenson
,
J.
,
2015
, “
Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart
,” Technical Report NREL/TP-6A20-65023, Contract No. DE-AC36-08GO28308.
5.
Khalid
,
S. J.
, and
Hearne
,
R. E.
,
1980
, “
Enhancing Dynamic Model Fidelity for Improved Prediction of Turbofan Engine Transient Performance
,”
16th Joint Propulsion Conference
,
Hartford, CT
,
June 30–July 2
.
6.
Pilidis
,
P.
, and
Macallum
,
N. R. L.
,
1986
, “
The Effect of Heat Transfer on Turbine Performance
,”
Proceedings of the ASME 1986 International Gas Turbine Conference and Exhibit. Volume 1: Turbomachinery
,
Dusseldorf, Germany
,
June 8–12
, 86-GT-275.
7.
Nielsen
,
A. E.
,
Moll
,
C. W.
, and
Staudacher
,
S.
,
2005
, “
Modeling and Validation of the Thermal Effects on Gas Turbine Transients
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
564
572
.
8.
Selvam
,
K.
,
De Prosperis
,
R.
, and
Vanga
,
N. R.
,
2014
, “
Transient Thermal Analysis of Gas Turbine Shut Down Physics: Normal and Forced Cooling
,”
Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition
,
Montreal, Quebec, Canada
,
Nov. 14–20
, IMECE2014-38164.
9.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, GT2017-63205.
10.
Siroka
,
S.
,
Monge-Concepción
,
I.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2021
, “
Correlating Cavity Sealing Effectiveness to Time-Resolved Rim Seal Events in the Presence of Vane Trailing Edge Flow
,”
Proceedings of ASME Turbo Expo 2021 Turbomachinery Technical Conference and Exposition
,
Virtual, Online
,
June 7–11
, GT2021-59285.
11.
Monge-Concepción
,
I.
,
Siroka
,
S.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2021
, “
Unsteady Turbine Rim Sealing and Vane Trailing Edge Flow Effects
,”
Proceedings of ASME Turbo Expo 2021 Turbomachinery Technical Conference and Exposition
,
Virtual, Online
,
June 7–11
.
12.
Johnson
,
B. V.
,
Mack
,
G. J.
,
Paolillo
,
R. E.
,
Daniels
,
W. A.
,
Johnson
,
B.
,
Beach
,
W. P.
, and
Daniels
,
W.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
30th Joint Propulsion Conference
,
Indianapolis, IN
,
June 27–29
, AIAA-94-2703.
13.
Clark
,
K.
,
Barringer
,
M.
,
Johnson
,
D.
,
Thole
,
K.
,
Grover
,
E.
, and
Robak
,
C.
,
2017
, “
Effects of Purge Flow Configuration on Sealing Effectiveness in a Rotor-Stator Cavity
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, GT2017-63910.
14.
Berdanier
,
R. A.
,
Monge-Concepción
,
I.
,
Knisely
,
B. F.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Grover
,
E. A.
,
2019
, “
Scaling Sealing Effectiveness in a Stator–Rotor Cavity for Differing Blade Spans
,”
ASME J. Turbomach.
,
141
(
5
), p.
051007
.
15.
Berdanier
,
R. A.
,
DeShong
,
E. T.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2021
, “
Evaluating the Effects of Transient Purge Flow on Stator-Rotor Seal Performance
,”
ASME J. Turbomach.
,
143
(
2
), p.
021006
.
16.
May
,
D.
, and
Chew
,
J. W.
,
2010
, “
Response of a Disk Cavity Flow to Gas Turbine Engine Transients
,”
Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air
,
Glasgow, UK
,
June 14–18
, GT2010-22824.
17.
Hualca
,
F. P.
,
Horwood
,
J. T. M.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2019
, “
The Effect of Vanes and Blades on Ingress in Gas Turbines
,”
Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
, GT2019-90987.
18.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2014
, “
Experimental Measurements of Hot Gas Ingestion Through Turbine Rim Seals at Off-Design Conditions
,”
Proc. Inst. Mech. Eng. J. Power Energy
,
228
(
5
), pp.
491
507
.
19.
Graikos
,
D.
,
Carnevale
,
M.
,
Sangan
,
C.
,
Lock
,
G.
, and
Scobie
,
J.
,
2021
, “
Influence of Flow Coefficients on Ingress Through Turbine Rim Seals of Flow Coefficient on Ingress Through Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111010
.
20.
Patinios
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
, and
Lock
,
G. D.
,
2017
, “
Performance of Rim-Seals in Upstream and Downstream Cavities Over a Range of Flow Coefficients
,”
Int. J. Turbomach. Propuls. Power
,
2
(
4
), p.
287
.
21.
Popovic
,
I.
, and
Hodson
,
H. P.
,
2013
, “
The Effects of a Parametric Variation of the Rim Seal Geometry on the Interaction Between Hub Leakage and Mainstream Flows in High Pressure Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
112501
.
22.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.
23.
Owen
,
J. M.
,
1989
, “
An Approximate Solution for the Flow Between a Rotating and a Stationary Disc
,”
ASME J. Turbomach.
,
111
(
3
), pp.
323
332
.
24.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.
25.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
31006
.
26.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems. Part 2: The Performance of Simple Seals in a Quasi-Axisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
98
105
.
27.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
J. Turbomach
,
125
(
3
), pp.
505
512
.
28.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2003
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
Proceedings of ASME Turbo Expo 2003 Power for Land, Sea, and Air
,
Atlanta, GA
,
June 16–19
, GT2003-38368.
29.
Gao
,
F.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2020
, “
Inertial Waves in Turbine Rim Seal Flows
,”
Phys. Rev. Fluids
,
5
(
2
), p.
024802
.
30.
Rabs
,
M.
,
Benra
,
F. K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air
,
Orlando, FL
,
June 8–12
.
31.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.
32.
Lei
,
X. I. E.
,
Qiang
,
D. U.
,
Guang
,
L. I. U.
,
Zengyan
,
L.
, and
Ran
,
R. E. N.
,
2021
, “
Investigation on Unsteady Flow Characteristics in Axial Rim Seal
,”
Proceedings of ASME Turbo Expo 2021 Turbomachinery Technical Conference and Exposition
,
Virtual, Online
,
June 7–11
, GT2021-58822..
33.
Robak
,
C. W.
,
Faghri
,
A.
, and
Thole
,
K. A.
,
2019
, “
Analysis of Gas Turbine Rim Cavity Ingestion With Axial Purge Flow Injection
,”
Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
.
34.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Hartford
,
E.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakgaes and Airfoil Heat Transfer
,”
Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Dusseldorf, Germany
,
June 16–20
, GT2014-25570.
35.
Monge-Concepción
,
I.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2020
, “
Evaluating the Effect of Vane Trailing Edge Flow on Turbine Rim Sealing
,”
ASME J. Turbomach.
,
142
(
8
), p.
081001
.
36.
Clark
,
K.
,
Barringer
,
M. D.
,
Thole
,
K. A.
,
Clum
,
C.
,
Hiester
,
P.
,
Memory
,
C.
, and
Robak
,
C.
,
2016
, “
Using a Tracer Gas to Quantify Sealing Effectiveness for Engine Realistic Rim Seals
,”
Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
.
37.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2012
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
38.
Figiola
,
R. S.
, and
Beasley
,
D. E.
,
2014
,
Theory and Design for Mechanical Measurements
, 2nd ed.,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
39.
DeShong
,
E. T.
,
Peters
,
B.
,
Berdanier
,
R. A.
,
Thole
,
K. A.
,
Paynabar
,
K.
, and
Gabraeel
,
N.
,
2021
, “
Correlating Time-Resolved Pressure Measurements With Rim Sealing Effectiveness for Real-Time Turbine Health Monitoring
,”
Proceedings of ASME Turbo Expo 2021 Turbomachinery Technical Conference and Exposition
,
Virtual, Online
,
June 7–11
, GT2021-59586.
40.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2012
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part II: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021013
.
You do not currently have access to this content.