Abstract

In this article, an unsteady tip leakage flow instability is identified and investigated for an axial compressor at near-surge conditions. We describe the results of experimental verification of a new compressor developed by improving the blade geometry based on the criterion for the occurrence of this unsteady phenomenon. In a high-speed multistage axial flow compressor having a subsonic high stagger rotor blade, a surge test was carried out by changing the tip clearance. Under a condition of large tip clearance, a drastic decrease in the static pressure rise coefficient near the surge point was observed. At this operating condition, large, unsteady pressure fluctuation at the blade tip was confirmed, and the occurrence of tip leakage vortex breakdown was clarified by unsteady multipoint pressure measurement and detailed unsteady numerical simulations. Due to the blockage effect caused by vortex breakdown of the tip leakage, double leakage and axially reversed flow near the trailing edge were observed. It was found that the vortex breakdown region of the tip leakage vortex propagated in the circumferential direction and caused the rotating instability. In order to investigate the relationship among this unsteady flow phenomenon, tip clearance size, and flow pattern, unsteady calculation was conducted by changing the blade tip stagger and tip clearance size. A new concept of tip clearance of staggered pitch reference was proposed, which makes it possible to include the effect of blade loading on the clearance and clarifies that there exists a threshold at which vortex breakdown occurs/does not occur. On the basis of the aforementioned results, a high-speed multistage improved compressor was designed and manufactured to prevent tip leakage vortex breakdown. A clearance change test using active clearance control technology was conducted, and an increase in the static pressure rise coefficient near the surge point was confirmed for each clearance. The design concept of the improved blade, which suppressed the unsteady tip leakage flow instability, was tested and verified, and the effectiveness of the design guideline in actual gas turbines for power generation was confirmed.

References

1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
McDougall
,
N. M.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
123
.
3.
Garnier
,
V. H.
,
Epstein
,
A. H.
, and
Greitzer
,
E. M.
,
1991
, “
Rotating Waves as a Stall Inception Indication in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
290
302
.
4.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
5.
Camp
,
T. R.
, and
Day
,
I. J.
,
1997
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,” Proceedings of ASME Turbo Expo 1997, ASME Paper No. 97-GT-526.
6.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
2000
, “
Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
(
1
),
45
54
.
7.
Yamada
,
K.
,
Kikuta
,
H.
,
Iwakiri
,
K.
,
Furukawa
,
M.
, and
Gunjishima
,
S.
,
2012
, “
An Explanation for Flow Features of Spike-Type Stall Inception in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021023
.
8.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
9.
Hewkin-Smith
,
M.
,
Pullan
,
G.
,
Grimshaw
,
S. D.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2017
, “
The Role of Tip Leakage Flow in Spike-Type Rotating Stall Inception
,”
ASME J. Turbomach.
,
141
(
6
), p.
061010
.
10.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
,
1999
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
121
(
3
), pp.
469
480
.
11.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.
12.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
374
.
13.
Bousquet
,
Y.
,
Binder
,
N.
,
Dufour
,
G.
,
Carbonneau
,
X.
,
Trebinjac
,
I.
, and
Roumeas
,
M.
,
2016
, “
Numerical Investigation of Kelvin–Helmholtz Instability in a Centrifugal Compressor Operating Near Stall
,”
ASME J. Turbomach.
,
138
(
7
), p.
071007
.
14.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Yoshida
,
S.
,
Minami
,
T.
,
Yamada
,
K.
, and
Furukawa
,
M.
,
2004
, “
Effect of Tip Clearance on Stall Evolution Process in a Low-Speed Axial Compressor Stage
,” Proceedings of ASME Turbo Expo 2004, ASME Paper No. GT2004-53354.
15.
Brandvik
,
T.
, and
Pullan
,
G.
,
2011
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
021025
.
16.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
,
1
, pp.
5
21
.
17.
Shur
,
M. L.
,
2000
, “
Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction
,”
AIAA J.
,
38
(
5
), pp.
784
792
.
18.
Smirnov
,
P. E.
, and
Menter
,
F. R.
,
2008
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term
,” Proceedings of ASME Turbo Expo 2008, ASME Paper No. GT2008-50480.
19.
Su
,
X.
, and
Yuan
,
X.
,
2014
, “
Predicting Compressor Corner Separation With Nonlinear Eddy-Viscosity Model
,” Proceedings of Asian Congress on Gas Turbines 2014, ACGT Paper No. 2014-0003.
20.
Gao
,
X.
,
Mito
,
R.
,
Okuzono
,
M.
,
Walker
,
T.
,
Seki
,
R.
, and
Ito
,
E.
,
2015
, “
Numerical and Experimental Investigation on the Effect of Tip Clearance of a Multi-Stage Axial Compressors
,” Proceedings of The International Gas Turbine Congress 2015, IGTC Paper No. IGTC2015-0063.
21.
Seki
,
R.
,
Yamashita
,
S.
, and
Mito
,
R.
,
2021
, “
Evaluation of a Flow Measurement Probe Influence on the Flow Field in High Speed Axial Compressors
,” Proceedings of ASME Turbo Expo 2021, ASME Paper No. GT2021-01098.
22.
Mito
,
R.
, and
Yamashita
,
S.
,
2019
, “
Prediction of Rotating Stall During Startup for Axial Compressors
,” Proceedings of ASME Turbo Expo 2019, ASME Paper No. GT2019-91340.
23.
Beselt
,
C.
,
Peitsch
,
D.
,
van Rennings
,
R.
,
Thiele
,
F.
, and
Ehrenfried
,
K.
,
2014
, “
Experimental and Numerical Investigation of the Unsteady Endwall Flow in a Highly Loaded Axial Compressor Stator
,” Proceedings of ASME Turbo Expo 2014, ASME Paper No. GT2014-25944.
24.
Sawada
,
K.
,
1995
, “
A Convenient Visualization Method for Identifying Vortex Centers
,”
Trans. Jpn. Soc. Aeronaut Space Sci.
,
38
(120), pp.
102
116
.
25.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
Trans. ASME
,
77
(
4
)
,
pp.
455
469
.
26.
Mailach
,
R.
,
Sauer
,
H.
, and
Vogeler
,
K.
,
2001
, “
The Periodical Interaction of the Tip Clearance Flow in the Blade Rows of Axial Compressors
,” Proceedings of ASME Turbo Expo 2001, ASME Paper No. 2001-GT-0299.
27.
Sirakov
,
B. T.
, and
Tan
,
C.-S.
,
2003
, “
Effect of Unsteady Stator Wake—Rotor Double-Leakage Tip Clearance Flow Interaction on Time-Average Compressor Performance
,”
ASME J. Turbomach.
,
125
(
3
), pp.
465
474
.
28.
Motimoto
,
K.
,
Matsumura
,
Y.
,
Suzuki
,
K.
,
Wakazono
,
S.
,
Kataoka
,
M.
, and
Yuri
,
M.
,
2021
, “
Operation Status of 1650 °C Class M501JAC Gas Turbine at T-Point 2 Power Plant Demonstration Facility
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
58
, p.
3
.
You do not currently have access to this content.