Abstract

This work focuses on the application of multi-fidelity methods for the robust design optimization of engine components. The robust design optimization approach yields geometric designs that have high efficiencies and are less sensitive to uncertainties from manufacturing and wear. However, the uncertainty quantification techniques required to evaluate the robustness are computationally expensive, which limits their use in robust optimization. Multi-fidelity methods offer a promising solution to reduce the computational cost while maintaining accuracy in both uncertainty quantification and optimization. A Kriging and a multi-fidelity recursive Cokriging framework are developed, implemented, and applied to a test function. In addition, a multi-fidelity super efficient global optimization algorithm is developed. The optimizer is surrogate model-based and can handle constraints. The developed methods are then applied to a compressor test case of a high pressure compressor blade row with 9 uncertainty and 24 design parameters of the geometry. The 2.5% quantile of the stage efficiency is used as a robustness measure and it is therefore optimized. Design bounds and performance constraints are applied. In addition, various uncertainty quantification techniques are analyzed. A multi-fidelity uncertainty quantification approach is developed that combines simplified coarse-grid low-fidelity results with high-fidelity results to reduce the computational cost while maintaining high accuracy. Uncertainty quantification techniques of three fidelity levels are then developed and used for the multi-fidelity approach in the design space. The robust design optimization of the compressor is performed and the optimal designs obtained from the multi-fidelity approach show superior performance compared to existing robust design optima in the literature.

References

1.
Sabater
,
C.
, and
Görtz
,
S.
,
2021
, “Gradient-Based Aerodynamic Robust Optimization Using the Adjoint Method and Gaussian Processes,”
Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences
,
A.
Gaspar-Cunha
,
J.
Periaux
,
K. C.
Giannakoglou
,
N. R.
Gauger
,
D.
Quagliarella
, and
D.
Greiner
, eds.,
Springer International Publishing
,
Cham
, pp.
221
226
.
2.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
SIAM Rev.
,
60
(
3
), pp.
550
591
.
3.
Rohit
,
R. J.
, and
Ganguli
,
R.
,
2022
, “
Co-Kriging Based Multi-Fidelity Uncertainty Quantification of Beam Vibration Using Coarse and Fine Finite Element Meshes
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
23
(
2
), pp.
147
168
.
4.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design via Surrogate Modelling: A Practical Guide
,
John Wiley & Sons, Ltd
.
5.
Keane
,
A. J.
,
2012
, “
Cokriging for Robust Design Optimization
,”
AIAA J.
,
50
(
11
), pp.
2351
2364
.
6.
Meliani
,
M.
,
Bartoli
,
N.
,
Lefebvre
,
T.
,
Bouhlel
,
M.-A.
,
Martins
,
J. R. R. A.
, and
Morlier
,
J.
,
2019
, “
Multi-Fidelity Efficient Global Optimization: Methodology and Application to Airfoil Shape Design
,”
AIAA Aviation 2019 Forum
,
Dallas, TX
,
June 17–21
. http://dx.dioi.org/10.2514/6.2019-3236
7.
Sudret
,
B.
,
Marelli
,
S.
, and
Wiart
,
J.
,
2017
, “
Surrogate Models for Uncertainty Quantification: An Overview
,”
2017 11th European Conference on Antennas and Propagation (EUCAP)
,
Paris, France
,
Mar. 19–24
, pp.
793
797
. .
8.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2008
,
Simulation and the Monte Carlo Method
,
John Wiley & Sons, Ltd
.
9.
Dittmann
,
M.
,
Schmidt
,
R.
, and
Meyer
,
M.
,
2023
, “
Application of Adjoint-Enhanced First Order Second Moment Method for Robust Design Optimization of a High Pressure Compressor Rotor
,”
ASME J. Turbomach.
,
145
(
2
), p.
021010
.
10.
Giles
,
M. B.
, and
Pierce
,
N. A.
,
2000
, “
An Introduction to the Adjoint Approach to Design
,”
Flow Turbul. Combus.
,
65
(
3/4
), pp.
393
415
.
11.
Fernández-Godino
,
M. G.
,
2023
, “
Review of Multi-Fidelity Models
,”
Adv. Comput. Sci. Eng.
,
1
(
4
), pp.
351
400
.
12.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization via Surrogate Modelling
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
463
(
2088
), pp.
3251
3269
.
13.
de Baar
,
J.
,
Roberts
,
S.
,
Dwight
,
R.
, and
Mallol
,
B.
,
2015
, “
Uncertainty Quantification for a Sailing Yacht Hull, Using Multi-Fidelity Kriging
,”
Comput. Fluids
,
123
, pp.
185
201
.
14.
Krishnan
,
K. V. V.
, and
Ganguli
,
R.
,
2021
, “
Multi-Fidelity Analysis and Uncertainty Quantification of Beam Vibration Using Co-Kriging Interpolation Method
,”
Appl. Math. Comput.
,
398
.
15.
Liu
,
Y.
,
Chen
,
S.
,
Wang
,
F.
, and
Xiong
,
F.
,
2018
, “
Sequential Optimization Using Multi-Level Cokriging and Extended Expected Improvement Criterion
,”
Struct. Multidiscipl. Optim.
,
58
(
3
), pp.
1155
1173
.
16.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.
17.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand
,”
J. Chem. Metall. Mining Soc. South Africa
,
52
(
6
), pp.
119
139
.
18.
Matheron
,
G.
,
1963
, “
Principles of Geostatistics
,”
Econ. Geol.
,
58
(
8
), pp.
1246
1266
.
19.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning
,
The MIT Press
,
Cambridge, MA
.
20.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
21.
Sasena
,
M. J.
,
2002
, “
Flexibility and Efficiency Enhancements for Constrained Global Design Optimization With Kriging Approximations
,” Ph.D. thesis,
University of Michigan
.
22.
Schonlau
,
M.
,
1997
, “
Computer Experiments and Global Optimization
,” Ph.D. thesis,
University of Waterloo
.
23.
Bouhlel
,
M. A.
,
Hwang
,
J.
,
Bartoli
,
N.
,
Lafage
,
R.
,
Morlier
,
J.
, and
Martins
,
J.
,
2019
, “
A Python Surrogate Modeling Framework With Derivatives
,”
Adv. Eng. Soft.
,
135
.
24.
Le Gratiet
,
L.
,
2013
, “
Multi-Fidelity Gaussian Process Regression for Computer Experiments
,” Ph.D. thesis,
Université Denis Diderot (Paris VII)
.
25.
Le Gratiet
,
L.
, and
Garnier
,
J.
,
2014
, “
Recursive Co-Kriging Model for Design of Computer Experiments With Multiple Levels of Fidelity
,”
Int. J. Uncert. Quantif.
,
4
(
5
), pp.
365
386
.
26.
Venter
,
G.
,
2010
, “Review of Optimization Techniques,”
Encyclopedia of Aerospace Engineering
,
R.
Blockley
, and
W.
Shyy
, eds.,
John Wiley & Sons, Ltd
.
27.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-box Functions
,”
ASME J. Global Optim.
,
13
(
4
), pp.
455
492
.
28.
Stork
,
J.
,
Eiben
,
A. E.
, and
Bartz-Beielstein
,
T.
,
2020
, “
A New Taxonomy of Global Optimization Algorithms
,”
Natural Comput.
,
21
(
2
), pp.
219
242
.
29.
Kushner
,
H. J.
,
1964
, “
A New Method of Locating the Maximum Point of An Arbitrary Multipeak Curve in the Presence of Noise
,”
ASME J. Basic. Eng.
,
86
(
1
), pp.
97
106
.
30.
Zhan
,
D.
,
Qian
,
J.
, and
Cheng
,
Y.
,
2017
, “
Pseudo Expected Improvement Criterion for Parallel EGO Algorithm
,”
J. Global Optim.
,
68
(
3
), pp.
641
662
.
31.
Sasena
,
M. J.
,
Papalambros
,
P. Y.
, and
Goovaerts
,
P.
,
2001
, “
The Use Of Surrogate Modeling Algorithms To Exploit Disparities In Function Computation Time Within Simulation-Based Optimization
,”
World Congress of Structural and Multidisciplinary Optimization
,
Dalian, China
,
June 3–8
.
32.
Powell
,
M. J. D.
,
1994
, “A Direct Search Optimization Method that Models the Objective and Constraint Functions by Linear Interpolation,”
Advances in Optimization and Numerical Analysis
,
S.
Gomez
, and
J.-P.
Hennart
, eds.,
Springer Netherlands
,
Dordrecht
, pp.
51
67
.
33.
Karimian
,
A.
,
Schmidt
,
R.
, and
Janke
,
C.
,
2024
, “
Robust Optimization of a Compressor Blade Through Combination of an Adjoint-Based Multistart Approach and Global Gaussian Process Regression
,”
ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition
,
London, UK
,
June 24–28, 2024
. .
34.
Meyer
,
M.
, and
Schmidt
,
R.
,
2023
, “
A Comparison of Gradient-Free and Gradient-Enhanced Optimization Methods for the Robust Design of a Compressor Rotor
,”
AIAA SCITECH 2023 Forum
,
National Harbor, MD and online
,
Jan. 23–27
.
35.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2010
, “
Probabilistic CFD Simulation of a High-Pressure Compressor Stage Taking Manufacturing Variability Into Account
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
,
10.1115/GT2010-22484
.
36.
Lapworth
,
L.
,
2004
, “
Hydra-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific & Engineering Computation (IC-SEC)
,
Singapore
,
June 30–July 2
.
37.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
. .
38.
Vasilopoulos
,
I.
,
2020
, “
CAD-Based and CAD-Free Aerodynamic Shape Optimization of Turbomachinery Blade Rows Using the Adjoint Method
,” Ph.D. thesis,
National Technical University of Athens
.
39.
Shahpar
,
S.
, and
Lapworth
,
L.
,
2003
, “
PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimisation
,”
ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
,
Atlanta, GA
,
June 16–19
. .
40.
Schmidt
,
R.
,
Voigt
,
M.
, and
Mailach
,
R.
,
2019
, “Latin Hypercube Sampling-Based Monte Carlo Simulation: Extension of the Sample Size and Correlation Control,”
Uncertainty Management for Robust Industrial Design in Aeronautics: Findings and Best Practice Collected During UMRIDA, a Collaborative Research Project (2013-2016) Funded by the European Union
,
C.
Hirsch
,
D.
Wunsch
,
J.
Szumbarski
,
L.
Laniewski-Wollk
, and
J.
Pons-Prats
, eds.,
Springer International Publishing
,
Cham
, pp.
279
289
.
You do not currently have access to this content.