Abstract

The instantaneous effect of unsteady wakes on film cooling effectiveness using a fast response pressure sensitive paint was studied. Testing was performed in a five-passage, low-speed wind tunnel using five times scaled versions of typical high-pressure blades (axial chord of 17 cm). The blowing ratios studied include 0.8 and 1.2, with density ratios of 1.0 and 1.5 at each blowing ratio. Upstream unsteady wakes were produced by a spoked wheel-type wake generator. The wake generator, utilizing a varying number of rods and rotational speeds, produced Strouhal numbers of 0.1 and 0.3 while the wind tunnel inlet mainstream Reynolds number was held at a constant value of 300,000 (mainstream velocity of 21 m/s) for every test case. For each Strouhal number, blowing ratio and density ratio studied, several positions within the period between rods, and the resulting wakes, were recorded. Results show that the location of the wake along a blade's surface had a significant impact on the film cooling effectiveness in the immediate location of the wake. An overall fluctuation of up to 69% in film cooling effectiveness was observed within the wake period. Conclusions also show that while mainstream flows with higher Strouhal numbers tend to decrease film cooling effectiveness, the fluctuation of film cooling effectiveness at higher Strouhal numbers was reduced when compared to results utilizing lower Strouhal numbers. A comparison of results from tests at different density ratios showed a much smaller change in the instantaneous film cooling effectiveness between test cases.

References

1.
Li
,
H.
,
Han
,
F.
,
Wang
,
H.
,
Zhou
,
Z.
, and
Tao
,
Z.
,
2018
, “
Film Cooling Characteristics on the Leading Edge of a Rotating Turbine Blade With Various Mainstream Reynolds Numbers and Coolant Densities
,”
Int. J. Heat Mass Transfer
,
127
(
Part B
), pp.
833
846
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
3.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
4.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
113001
.
5.
Karaoglanli
,
A. C.
,
Ogawa
,
K.
,
Turk
,
A.
, and
Ozdemir
,
I.
,
2013
, “Thermal Shock and Cycling Behavior of Thermal Barrier Coatings (TBCs) Used in Gas Turbines,”
Progress in Gas Turbine Performance
,
E.
Benini
, ed.,
InTech
,
London
, pp.
237
260
.
6.
Li
,
D.
,
Pang
,
Y.
,
Lu
,
T.
,
Liu
,
Z.
, and
Chen
,
S.
,
2022
, “
Numerical Analysis of Thermal Shock Cracking Behaviors of Ceramics Based on the Force-Heat Equivalence Energy Density Principle
,”
Front. Mater.
,
8
(
1
), p.
825327
.
7.
Zhu
,
D.
, and
Miller
,
R. A.
,
1998
, “
Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings
,”
Mater. Sci. Eng. A
,
245
(
2
), pp.
212
223
.
8.
Staroselsky
,
A.
,
Martin
,
T. J.
, and
Borkowski
,
L.
,
2018
, “
The Influence of Thermal Transient Rates on Coated Turbine Parts’ Life Expectancy
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041034
.
9.
Xingdan
,
Z.
,
Jingzhou
,
Z.
, and
Xiaoming
,
T.
,
2015
, “
An Experimental Investigation of Showerhead Film Cooling Performance on a Turbine Blade
,”
Proc. Eng.
,
99
, pp.
634
645
.
10.
Rallabandi
,
A. P.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2012
, “
Unsteady Wake and Coolant Density Effects on Turbine Blade Film Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
8
), p.
081701
.
11.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2011
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
12.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
4
), pp.
620
627
.
13.
Chowdhury
,
N. H. K.
,
Qureshi
,
S. A.
,
Zhang
,
M.
, and
Han
,
J. C.
,
2017
, “
Influence of Turbine Blade Leading Edge Shape on Film Cooling With Cylindrical Holes
,”
Int. J. Heat Mass Transfer
,
115
(
Part B
), pp.
895
908
.
14.
Du
,
H.
,
Han
,
J. C.
, and
Ekkad
,
S. V.
,
1998
, “
Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
120
(
4
), pp.
808
817
.
15.
Chen
,
D.
,
Zhu
,
H.
,
Liu
,
C.
,
Li
,
H.
,
Li
,
B.
, and
Zhou
,
D.
,
2019
, “
Combined Effects of Unsteady Wake and Free-Stream Turbulence on Turbine Blade Film Cooling With Laid-Back Fan-Shaped Holes Using PSP Technique
,”
Int. J. Heat Mass Transfer
,
133
, pp.
382
392
.
16.
Mehendale
,
A. B.
,
Han
,
J. C.
,
Ou
,
S.
, and
Lee
,
C. P.
,
1994
, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part II—Effect on Film Effectiveness and Heat Transfer Distributions
,”
ASME J. Turbomach.
,
116
(
4
), pp.
730
737
.
17.
Du
,
H.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1999
, “
Effect of Unsteady Wake With Trailing Edge Coolant Ejection on Film Cooling Performance for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
121
(
3
), pp.
448
455
.
18.
Nikparto
,
A.
, and
T. Schobeiri
,
M.
,
2017
, “
Experimental Investigation of Film-Cooling Effectiveness of a Highly Loaded Turbine Blade Under Steady and Periodic Unsteady Flow Conditions
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
7
), p.
072201
.
19.
Han
,
J. C.
,
Zhang
,
L.
, and
Ou
,
S.
,
1993
, “
Influence of Unsteady Wake on Heat Transfer Coefficient From a Gas Turbine Blade
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
4
), pp.
904
911
.
20.
Sounik
,
J. L.
, and
Wright
,
L. M.
,
2022
, “
Effects of Blowing and Density Ratios on Unsteady Film Cooling Effectiveness Using Fast-Response Pressure-Sensitive Paint
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
2
), p.
021009
.
21.
Gao
,
Z.
,
Narzary
,
D. P.
, and
Han
,
J. C.
,
2008
, “
Film Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Axial Shaped Holes
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2139
2152
.
22.
Heidmann
,
J. D.
,
Lucci
,
B. L.
, and
Reshotko
,
E.
,
1997
, “
An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
123
(
2
), pp.
214
221
.
23.
Hwang
,
S.
,
Son
,
C.
,
Seo
,
D.
,
Rhee
,
D.
, and
Cha
,
B.
,
2016
, “
Comparative Study on Steady and Unsteady Conjugate Heat Transfer Analysis of a High Pressure Turbine Blade
,”
Appl. Therm. Eng.
,
99
, pp.
765
775
.
24.
Jiang
,
Y.
,
He
,
L.
,
Capone
,
L.
, and
Romero
,
E.
,
2016
, “
Investigation of Steady and Unsteady Film-Cooling Using Immersed Mesh Blocks With New Conservative Interface Scheme
,”
Proceedings of ASME Turbo Expo
,
Seoul, South Korea
,
June 13–17
, pp.
1
12
.
25.
Qenawy
,
M.
,
Taha
,
M.
, and
Abdelbaky Elbatran
,
A. H.
,
2022
, “
Unsteady Adiabatic Film Cooling Effectiveness Behind Shaped Holes
,”
Case Stud. Therm. Eng.
,
34
, p.
102005
.
26.
Khojasteh
,
A. R.
,
Wang
,
S. F.
,
Peng
,
D.
,
Yavuzkurt
,
S.
, and
Liu
,
Y. Z.
,
2017
, “
Structure Analysis of Adiabatic Film Cooling Effectiveness in the Near Field of a Single Inclined Jet: Measurement Using Fast-Response Pressure-Sensitive Paint
,”
Int. J. Heat Mass Transfer
,
110
, pp.
629
642
.
27.
Cai
,
T.
,
Peng
,
D.
,
Yavuzkurt
,
S.
, and
Liu
,
Y. Z.
,
2018
, “
Unsteady 2-D Film-Cooling Effectiveness Behind a Single Row of Holes at Different Blowing Ratios: Measurements Using Fast-Response Pressure-Sensitive Paint
,”
Int. J. Heat Mass Transfer
,
120
, pp.
1325
1340
.
28.
Shao
,
H.
,
Qenawy
,
M.
,
Zhang
,
T.
,
Peng
,
D.
,
Liu
,
Y.
, and
Zhou
,
W.
,
2020
, “
Experimental Study of Oscillating Freestream Effect on the Spatiotemporal Distributions of Leading-Edge Film Cooling
,”
ASME J. Turbomach.
,
143
(
1
), p.
011002
.
29.
Gregory
,
J. W.
,
Sakaue
,
H.
,
Liu
,
T.
, and
Sullivan
,
J. P.
,
2014
, “
Fast Pressure-Sensitive Paint for Flow and Acoustic Diagnostics
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
303
330
.
30.
Bitter
,
M.
,
Stotz
,
S.
, and
Niehuis
,
R.
,
2021
, “
On High-Resolution Pressure Amplitude and Phase Measurements Comparing Fast-Response Pressure Transducers and Unsteady Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
143
(
3
), p.
031012
.
31.
Sperling
,
S. J.
, and
Mathison
,
R. M.
,
2021
, “
Time-Accurate Evaluation of Film Cooling Jet Characteristics for Plenum and Crossflow Coolant Supplies
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
4
), p.
041007
.
32.
Watanabe
,
T.
,
Azuma
,
T.
,
Uzawa
,
S.
,
Himeno
,
T.
, and
Inoue
,
C.
,
2018
, “
Unsteady Pressure Measurement on Oscillating Blade in Transonic Flow Using Fast-Response Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
140
(
6
), p.
061003
.
33.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
1
21
.
34.
Han
,
J. C.
, and
Wright
,
L. M.
,
2020
,
Experimental Methods in Heat Transfer and Fluid Mechanics
,
CRC Press
,
Milton, UK
.
35.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
36.
Johnson
,
B.
, and
Hu
,
H.
,
2016
, “
Measurement Uncertainty Analysis in Determining Adiabatic Film Cooling Effectiveness by Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
138
(
12
), p.
121004
.
You do not currently have access to this content.