Abstract

Understanding spatial development of a turbulent mixing layer is essential for many engineering applications. However, the flow development is difficult to replicate in physical or numerical experiments. For this reason, the most attractive method for the mixing layer analysis is the direct numerical simulation (DNS), with the most control over the simulation inputs and free from modeling assumptions. On the other hand, the DNS cost often prevents conducting the sensitivity analysis of the simulation results to variations in the numerical procedure and thus, separating numerical and physical effects. In this paper, effects of the computational domain dimensions on statistics collected from DNS of a spatially developing incompressible turbulent mixing layer are analyzed with the focus on determining the domain dimensions suitable for studying the flow asymptotic state. In the simulations, the mixing layer develops between two coflowing laminar boundary layers formed on two sides of a sharp-ended splitter plate of a finite thickness with characteristics close to those of the untripped boundary layers in the experiments by Bell and Mehta, AIAA J., 28(12), 2034 (1990). The simulations were conducted using the spectral-element code Nek5000.

References

1.
Liepmann
,
H. W.
, and
Laufer
,
J.
,
1947
, “
Investigations of Free Turbulent Mixing
,” NASA Technical Report No. 1257.
2.
Wygnanski
,
I.
, and
Fiedler
,
H. E.
,
1970
, “
The Two-Dimensional Mixing Region
,”
J. Fluid Mech.
,
41
(
2
), pp.
327
361
.10.1017/S0022112070000630
3.
Brown
,
G. L.
, and
Roshko
,
A.
,
1974
, “
On Density Effects and Large Structure in Turbulent Mixing Layers
,”
J. Fluid Mech.
,
64
(
4
), pp.
775
816
.10.1017/S002211207400190X
4.
Oster
,
D.
,
Wygnanski
,
I.
, and
Fiedler
,
H.
,
1977
, “
Some Preliminary Observations on the Effect of Initial Conditions on the Structure of the Two-Dimensional Turbulent Mixing Layer
,”
Turbulence in Internal Flows: Turbomachinery and Other Engineering Applications; Proceedings of the SQUID Workshop
, Warrenton, Va., June 14, 15, 1976. (A78-34826 14-34) Washington, DC, Hemisphere Publishing Corp., pp.
67
84
.
5.
Weller
,
H. G.
,
Tabor
,
G.
,
Gosman
,
A. D.
, and
Fureby
,
C.
,
1998
, “
Application of a Flame-Wrinkling LES Combustion Model to a Turbulent Mixing Layer
,”
Proc. Int. Symp. Combust.
,
27
(
1
), pp.
899
907
.10.1016/S0082-0784(98)80487-6
6.
Yoder
,
D. A.
,
DeBonis
,
J. R.
, and
Georgiadis
,
N. J.
,
2015
, “
Modeling of Turbulent Free Shear Flows
,”
Comput. Fluids
,
117
, pp.
212
232
.10.1016/j.compfluid.2015.05.009
7.
Browand
,
F. K.
, and
Latigo
,
B. O.
,
1979
, “
Growth of the Two-Dimensional Mixing Layer From a Turbulent and Nonturbulent Boundary Layer
,”
Phys. Fluids
,
22
(
6
), pp.
1011
1019
.10.1063/1.862705
8.
Ho
,
C. M.
, and
Huerre
,
P.
,
1984
, “
Perturbed Free Shear Layers
,”
Ann. Rev. Fluid Mech.
,
16
(
1
), pp.
365
422
.10.1146/annurev.fl.16.010184.002053
9.
Mehta
,
R.
,
1991
, “
Effect of Velocity Ratio on Plane Mixing Layer Development: Influence of the Splitter Plate Wake
,”
Exp. Fluids
,
10
(
4
), pp.
194
204
.10.1007/BF00190389
10.
McMullan
,
W. A.
,
Gao
,
S.
, and
Coats
,
C. M.
,
2009
, “
The Effect of Inflow Conditions on the Transition to Turbulence in Large Eddy Simulations of Spatially Developing Mixing Layers
,”
Intl. J. Heat Fluid Flow
,
30
(
6
), pp.
1054
1066
.10.1016/j.ijheatfluidflow.2009.07.005
11.
Bell
,
J. H.
, and
Mehta
,
R. D.
,
1990
, “
Development of a Two-Stream Mixing Layer From Tripped and Untripped Boundary Layers
,”
AIAA J
,
28
(
12
), pp.
2034
2042
.10.2514/3.10519
12.
Slessor
,
M. D.
,
Bond
,
C. L.
, and
Dimotakis
,
P. E.
,
1998
, “
Turbulent Shear-Layer Mixing at High Reynolds Numbers: Effects of Inflow Conditions
,”
J. Fluid Mech.
,
376
, pp.
115
138
.10.1017/S0022112098002857
13.
Vreman
,
B. E. R. T.
,
Geurts
,
B.
, and
Kuerten
,
H. A. N. S.
,
1997
, “
Large-Eddy Simulation of the Turbulent Mixing Layer
,”
J. Fluid Mech.
,
339
, pp.
357
390
.10.1017/S0022112097005429
14.
McMullan
,
W. A.
, and
Garrett
,
S. J.
,
2016
, “
Initial Condition Effects on Large Scale Structure in Numerical Simulations of Plane Mixing Layers
,”
Phys. Fluids
,
28
(
1
), p.
015111
.10.1063/1.4939835
15.
Sandham
,
N. D.
, and
Sandberg
,
R. D.
,
2009
, “
Direct Numerical Simulation of the Early Development of a Turbulent Mixing Layer Downstream of a Splitter Plate
,”
J. Turbul.
,
10
(
1
), pp.
1
17
.10.1080/14685240802698774
16.
Laizet
,
S.
,
Lardeau
,
S.
, and
Lamballais
,
E.
,
2010
, “
Direct Numerical Simulation of a Mixing Layer Downstream a Thick Splitter Plate
,”
Phys. Fluids
,
22
(
1
), p.
015104
.10.1063/1.3275845
17.
Moin
,
P.
, and
Mahesh
,
K.
,
1998
, “
Direct Numerical Simulation: A Tool in Turbulence Research
,”
Ann. Rev. Fluid Mech.
,
30
(
1
), pp.
539
578
.10.1146/annurev.fluid.30.1.539
18.
Colmenares
,
F. J. D.
,
Poroseva
,
S. V.
,
Peet
,
Y. T.
, and
Murman
,
S. M.
,
2017
, “
DNS of a Spatially Developing Turbulent Mixing Layer From Co-Flowing Laminar Boundary Layers
,”
AIAA
Paper No. 2017-3641. 10.2514/6.2017-3641
19.
Ko
,
J.
,
Lucor
,
D.
, and
Sagaut
,
P.
,
2008
, “
Sensitivity of Two-Dimensional Spatially Developing Mixing Layers With Respect to Uncertain Inflow Conditions
,”
Phys. Fluids
,
20
(
7
), p.
077102
.10.1063/1.2937465
20.
Moser
,
R. D.
, and
Rogers
,
M.
,
1993
, “
The Three-Dimensional Evolution of a Plane Mixing Layer: Pairing and Transition to Turbulence
,”
J. Fluid Mech.
,
247
, pp.
275
320
.10.1017/S0022112093000473
21.
Wang
,
Y.
,
Tanahashi
,
M.
, and
Miyauchi
,
T.
,
2007
, “
Coherent Fine Scale Eddies in Turbulence Transition of Spatially-Developing Mixing Layer
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1280
1290
.10.1016/j.ijheatfluidflow.2007.06.009
22.
Attili
,
A.
, and
Bisetti
,
F.
,
2012
, “
Statistics and Scaling of Turbulence in a Spatially Developing Mixing Layer at Reλ= 250
,”
Phys. Fluids
,
24
(
3
), p.
035109
.10.1063/1.3696302
23.
Comte
,
P.
,
Lesieur
,
M.
, and
Lamballais
,
E.
,
1992
, “
Large- and Small-Scale Stirring of Vorticity and a Passive Scalar in a 3-D Temporal Mixing Layer
,”
Phys. Fluids A
,
4
(
12
), pp.
2761
2778
.10.1063/1.858334
24.
Tanahashi
,
M.
,
Iwase
,
S.
, and
Miyauchi
,
T.
,
2001
, “
Appearance and Alignment With Strain Rate of Coherent Fine Scale Eddies in Turbulent Mixing Layer
,”
J. Turbul.
,
2
, p.
N6
.10.1088/1468-5248/2/1/006
25.
Takamure
,
K.
,
Ito
,
Y.
,
Sakai
,
Y.
,
Iwano
,
K.
, and
Hayase
,
T.
,
2018
, “
Momentum Transport Process in the Quasi Self-Similar Region of Free Shear Mixing Layer
,”
Phys. Fluids
,
30
(
1
), p.
015109
.10.1063/1.5004500
26.
Itoh
,
T.
,
Naka
,
Y.
,
Minamoto
,
Y.
,
Shimura
,
M.
, and
Tanahashi
,
M.
,
2018
, “
Large-Scale Clustering of Coherent Fine-Scale Eddies in a Turbulent Mixing Layer
,”
Int. J. Heat Fluid Flow
,
72
, pp.
100
108
.10.1016/j.ijheatfluidflow.2018.05.007
27.
Rogers
,
M. M.
, and
Moser
,
R. D.
,
1992
, “
The Three-Dimensional Evolution of a Plane Mixing Layer: The Kelvin-Helmholtz Rollup
,”
J. Fluid Mech.
,
243
(
-1
), pp.
183
226
.10.1017/S0022112092002696
28.
Rogers
,
M. M.
, and
Moser
,
R. D.
,
1994
, “
Direct Simulation of a Self-Similar Turbulent Mixing Layer
,”
Phys. Fluids
,
6
(
2
), pp.
903
923
.10.1063/1.868325
29.
Attili
,
A.
, and
Bisetti
,
F.
,
2013
, “
Fluctuations of a Passive Scalar in a Turbulent Mixing Layer
,”
Phys. Rev. E
,
88
, p.
033013
.10.1103/PhysRevE.88.033013
30.
Attili
,
A.
,
Cristancho
,
J. C.
, and
Bisetti
,
F.
,
2014
, “
Statistics of the Turbulent/Non-Turbulent Interface in a Spatially Developing Mixing Layer
,”
J. Turbul.
,
15
(
9
), pp.
555
568
.10.1080/14685248.2014.919394
31.
Laizet
,
S.
, and
Lamballais
,
E.
,
2006
, “
Direct Numerical Simulation of a Spatially Evolving Flow From an Asymmetric Wake to a Mixing Layer
,”
Direct and Large-Eddy Simulation VI
,
E.
Lamballais
,
R.
Friedrich
,
B. J.
Geurts
,
O.
Métais
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
446
474
.
32.
Fathali
,
M.
,
Meyers
,
J.
,
Rubio
,
G.
,
Smirnov
,
S.
, and
Baelmans
,
M.
,
2008
, “
Sensitivity Analysis of Initial Condition Parameters on the Transitional Temporal Turbulent Mixing Layer
,”
J. Turbul.
,
9
, p.
N12
.10.1080/14685240801964912
33.
Townsend
,
A.
,
1976
,
The Structure of Turbulent Shear Flow. Cambridge Monographs on Mechanics
,
Cambridge University Press
,
New York
.
34.
Dimotakis
,
P. E.
,
1991
, “
Turbulent Free Shear Layer Mixing and Combustion
,”
High-Speed-Flight Propulsion Systems, in Progress in Astronautics and Aeronautics
,
S. N. B.
Murthy
and
E. T.
Curran
, eds., Vol.
137
,
American Institute of Aeronautics Astronautics
,
Washington, DC
, pp.
265
340
.
35.
Narayanan
,
S.
, and
Hussain
,
F.
,
1996
, “
Measurements of Spatiotemporal Dynamics in a Forced Plane Mixing Layer
,”
J. Fluid Mech.
,
320
(
-1
), pp.
71
115
.10.1017/S002211209600746X
36.
Dimotakis
,
P. E.
, and
Brown
,
G. L.
,
1976
, “
The Mixing Layer at High Reynolds Number: Large-Structure Dynamics and Entrainment
,”
J. Fluid Mech.
,
78
(
3
), pp.
535
560
.10.1017/S0022112076002590
37.
Bell
,
J. H.
, and
Mehta
,
R. D.
,
1989
, “
Design and Calibration of the Mixing Layer and Wind Tunnel
,”
Department of Aeronautics and Astronautics, Stanford University
,
Stanford, CA
, Standard No. JIAA No. TR-89.
38.
Dziomba
,
B.
, and
Fiedler
,
H. E.
,
1985
, “
Effect of Initial Conditions on Two-Dimensional Free Shear Layers
,”
J. Fluid Mech.
,
152
, pp.
419
442
.10.1017/S0022112085000763
39.
McMullan
,
W. A.
,
2015
, “
Spanwise Domain Effects on the Evolution of the Plane Turbulent Mixing Layer
,”
Int. J. Comp. Fluid Dyn.
,
29
(
6–8
), pp.
333
345
.10.1080/10618562.2015.1081180
40.
Biancofiore
,
L.
,
2014
, “
Crossover Between Two- and Three-Dimensional Turbulence in Spatial Mixing Layers
,”
J. Fluid Mech.
,
745
, pp.
164
179
.10.1017/jfm.2014.85
41.
Balaras
,
E.
,
Piomelli
,
U.
, and
Wallace
,
J. M.
,
2001
, “
Self-Similar States in Turbulent Mixing Layers
,”
J. Fluid Mech.
,
446
, pp.
1
24
.10.1017/S0022112001005626
42.
Colmenares
,
F. J. D.
,
Poroseva
,
S. V.
,
Peet
,
Y. T.
, and
Murman
,
S. M.
,
2018
, “
Analysis of Uncertainty Sources in DNS of a Turbulent Mixing Layer Using Nek5000
,”
AIAA
Paper No. 2018-3226. 10.2514/6.2018-3226
43.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comp. Phys.
,
54
(
3
), pp.
468
488
.10.1016/0021-9991(84)90128-1
44.
Fischer
,
P.
,
Kruse
,
J.
,
Mullen
,
J.
,
Tufo
,
H.
,
Lottes
,
J.
, and
Kerkemeier
,
S.
,
2008
, “
NEK5000: Open Source Spectral Element CFD Solver
,”
Argonne National Laboratory
,
Lemont, IL
, accessed on June 28, 2023, https://nek5000.mcs.anl.gov
45.
Ohlsson
,
J.
,
Schlatter
,
P.
,
Fischer
,
P. F.
, and
Henningson
,
D. S.
,
2010
, “
Direct Numerical Simulation of Separated Flow in a Three-Dimensional Diffuser
,”
J. Fluid Mech.
,
650
, pp.
307
318
.10.1017/S0022112010000558
46.
Vinuesa
,
R.
,
Hosseini
,
S. M.
,
Hanifi
,
A.
,
Henningson
,
D. S.
, and
Schlatter
,
P.
,
2015
, “
Direct Numerical Simulation of the Flow Around a Wing Section Using High-Order Parallel Spectral Methods
,”
Proceedings of the Ninth International Symposium on Turbulence and Shear Flow Phenomena
, Melbourne, Australia, June 30–July 3, Paper No. 2B-3.http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1465796&dswid=-7900
47.
Schlatter
,
P.
, and
Örlü
,
R.
,
2012
, “
Turbulent Boundary Layers at Moderate Reynolds Numbers: Inflow Length and Tripping Effects
,”
J. Fluid Mech.
,
710
, pp.
5
34
.10.1017/jfm.2012.324
48.
Sillero
,
J. A.
,
Jiménez
,
J.
, and
Moser
,
R. D.
,
2013
, “
One-Point Statistics for Turbulent Wall-Bounded Flows at Reynolds Numbers Up to δ+ ≈ 2000
,”
Phys. Fluids
,
25
(
10
), p.
105102
.10.1063/1.4823831
49.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
50.
Delville
,
J.
,
Ukeiley
,
L.
,
Cordier
,
L.
,
Bonnet
,
J. P.
, and
Glauser
,
M.
,
1999
, “
Examination of Large-Scale Structures in a Turbulent Plane Mixing Layer: Part 1—Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
391
, pp.
91
122
.10.1017/S0022112099005200
51.
Mansour
,
N. N.
,
Ferziger
,
J. H.
, and
Reynolds
,
W. C.
,
1978
, “
Large-Eddy Simulation of a Turbulent Mixing Layer
,”
Thermosciences Division, Department of Mechanical Engineering, Stanford University
,
Stanford, CA
, Report No. TF-11.
52.
Bell
,
J.
, and
Mehta
,
R.
,
1989
, “
Three-Dimensional Structure of a Plane Mixing Layer
,” AIAA Paper No. 89–0124.10.2514/6.1989-124
53.
Clark
,
T. T.
, and
Zhou
,
Y.
,
2003
, “
Self-Similarity of Two Flows Induced by Instabilities
,”
Phys. Rev. E
,
68
(
6
), p.
066305
.10.1103/PhysRevE.68.066305
You do not currently have access to this content.