Spatial discretization of axially moving media eigenvalue problems is examined from the perspectives of moving versus stationary system basis functions, configuration space versus state space form discretization, and subcritical versus supercritical speed convergence. The moving string eigenfunctions, which have previously been shown to give excellent discretization convergence under certain conditions, become linearly dependent and cause numerical problems as the number of terms increases. This problem does not occur in a discretization of the state space form of the eigenvalue problem, although convergence is slower, not monotonic, and not necessarily from above. Use of the moving string basis at supercritical speeds yields strikingly poor results with either the configuration or state space discretizations. The stationary system eigenfunctions provide reliable eigenvalue predictions across the range of problems examined. Because they have known exact solutions, the moving string on elastic foundation and the traveling, tensioned beam are used as illustrative examples. Many of the findings, however, apply to more complex moving media problems, including nontrivial equilibria of nonlinear models. [S0739-3717(00)02103-6]

1.
Mote
, Jr.,
C. D.
,
1965
, “
A Study of Bandsaw Vibrations
,”
J. Franklin Inst.
,
279
, pp.
430
444
.
2.
Barakat
,
R.
,
1967
, “
Transverse Vibrations of a Moving Thin Rod
,”
J. Acoust. Soc. Am.
,
43
, pp.
533
539
.
3.
Hwang
,
S. J.
, and
Perkins
,
N. C.
,
1992
, “
Supercritical Stability of an Axially Moving Beam. Part 2: Vibration and Stability Analysis
,”
J. Sound Vib.
,
154
, pp.
397
409
.
4.
Parker
,
R. G.
,
1999
, “
Supercritical Speed Stability of the Trivial Equilibrium of an Axially Moving String on an Elastic Foundation
,”
J. Sound Vib.
,
221
, No.
2
, pp.
205
219
.
5.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
,
1991
, “
Response and Discretization Methods for Axially Moving Materials
,”
Appl. Mech. Rev.
,
44
, pp.
279
284
.
6.
Chen
,
J. S.
,
1997
, “
Natural Frequencies and Stability of an Axially Traveling String in Contact with a Stationary Load System
,”
J. Vib. Acoust.
,
119
, pp.
152
157
.
7.
Meirovitch
,
L.
,
1974
, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
AIAA J.
,
12
, pp.
1337
1342
.
8.
D’Eleuterio
,
G. M.
, and
Hughes
,
P. C.
,
1984
, “
Dynamics of Gyroelastic Continua
,”
ASME J. Appl. Mech.
51
, pp.
415
422
.
9.
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
, pp.
738
744
.
10.
Huseyin
,
K.
,
1976
, “
Standard Forms of the Eigenvalue Problems Associated With Gyroscopic Systems
,”
J. Sound Vib.
,
45
, No.
1
, pp.
29
37
.
11.
Courant, R., and Hilbert, D., 1953, Methods of Mathematical Physics, Vol. 1, Interscience Publishers, New York, pp. 61–65.
12.
Perkins
,
N. C.
,
1990
, “
Linear Dynamics of a Translating String on Elastic Foundation
,”
J. Vib. Acoust.
,
112
, pp.
3
13
.
13.
Parker
,
R. G.
, and
Sathe
,
P. J.
,
1999
, “
Exact Solutions for the Free and Forced Vibration of a Spinning Disk-Spindle System
,”
J. Sound Vib.
,
223
, No.
3
, pp.
445
465
.
14.
Lengoc
,
L.
, and
McCallion
,
H.
,
1996
, “
Transverse Vibration of a Moving String: A Comparison Between the Closed-Form Solution and the Normal-Mode Solution
,”
J. Syst. Eng.
,
6
, pp.
72
78
.
15.
Wickert
,
J. A.
,
1992
, “
Nonlinear Vibration of a Traveling Tensioned Beam
,”
Int. J. Nonlinear Mech.
,
27
, pp.
503
517
.
16.
Mockensturm
,
E. M.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Stability and Limit Cycles of Parametrically Excited, Axially Moving Strings
,”
J. Vib. Acoust.
,
118
, pp.
346
351
.
17.
Pakdemirli
,
M.
, and
Ulsoy
,
A. G.
,
1997
, “
Stability Analysis of an Axially Accelerating String
,”
J. Sound Vib.
,
203
, pp.
815
832
.
18.
Parker, R. G., and Lin, Y., 2000, “Parametric Instability of Axially Moving Media Subjected to Multi-Frequency Tension and Speed Fluctuations,” J. Appl. Mech., accepted.
You do not currently have access to this content.