The dynamics of a self-sustained electromechanical transducer is studied. The stability of the critical points is analyzed using the analytic Routh-Hurwitz criterion. Analytic oscillatory solutions are obtained in both the resonant and non-resonant cases. Chaotic behavior is observed using the Shilnikov theorem and from a direct numerical simulation of the equations of motion.
Issue Section:
Technical Papers
1.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations Wiley, New York.
2.
Woafo
, P.
, Fotsin
, H. B.
, and Chedjou
, J. C.
, 1998
, “Dynamics of Two Nonlinearly Coupled Oscillators
,” Phys. Scr.
, 57
, pp. 195
–200
.3.
Kozlowsky
, J.
, Parlitz
, U.
, and Lauterborn
, W.
, 1995
, “Bifurcation Analysis of Two Coupled Periodically Driven Duffing Oscillators
,” Phys. Rev. E
, 51
, pp. 1861
–1867
.4.
Poliashenko
, M.
, and Mckay
, S. R.
, 1992
, “Chaos due to Homoclinic and Heteroclinic Orbits in Two Coupled Oscillators with Nonisochronism
,” Phys. Rev. A
, 46
, pp. 5271
–5274
.5.
Chakraborty
, T.
, and Rand
, R. H.
, 1988
, “The Transition from Phase Locking to Drift in a System of Two Weakly Coupled van der Pol Oscillators
,” Int. J. Non-Linear Mech.
, 28
, pp. 369
–376
.6.
Pastor-Dia`z
, I.
, and Lo´pez-Fraguas
, A.
, 1995
, “Dynamics of two coupled van der Pol oscillators
,” Phys. Rev. E
, 52
, pp. 1480
–1489
.7.
Kapitaniak
, T.
, and Steeb
, W. H.
, 1991
, “Transition to hyperchaos in coupled generalized van der Pol equations
,” Phys. Lett. A
, 152
, pp. 33
–36
.8.
Woafo
, P.
, Chedjou
, J. C.
, and Fotsin
, H. B.
, 1996
, “Dynamics of a System Consisting of a van der Pol Oscillator Coupled to a Duffing Oscillator
,” Phys. Rev. E
, 54
, pp. 5929
–5934
.9.
Hasler
, M. J.
, 1987
, “Electrical Circuits with Chaotic Behavior
,” Proc. IEEE
, 75
, pp. 1009
–1021
.10.
Hayashi, C., 1964, Nonlinear Oscillations in Physical Systems, 1964, McGraw-Hill, New York.
11.
Parlitz
, U.
, and Lauterborn
, W.
, 1987
, “Period-doubling Cascades and Devil’s Staircases of the Driven van der Pol Oscillator
,” Phys. Rev. A
, 36
, pp. 1428
–1434
.12.
Szemplin´ska-Stupnicka
, W.
, and Rudowski
, J.
, 1994
, “Neimark Bifurcation, Almost Periodicity and Chaos in the Forced van der Pol-Duffing System in the Neighborhood of the Principal Resonance
,” Phys. Lett. A
, 192
, pp. 201
–206
.13.
Venkatesan
, A.
, and Lakshmanan
, M.
, 1997
, “Bifurcation and Chaos in the Double-well Duffing van der Pol Oscillator: Numerical and Analytical Studies
,” Phys. Rev. E
, 56
, pp. 6321
–6330
.14.
Guckenheimer, J., and Holmes, P. J., 1983, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York.
15.
Asfar
, K. R.
, 1989
, “Quenching of Self-excited Vibrations
,” ASME J. Vibr. Acoust.
, 111
, pp. 130
–133
.Copyright © 2001
by ASME
You do not currently have access to this content.