The dynamics of a self-sustained electromechanical transducer is studied. The stability of the critical points is analyzed using the analytic Routh-Hurwitz criterion. Analytic oscillatory solutions are obtained in both the resonant and non-resonant cases. Chaotic behavior is observed using the Shilnikov theorem and from a direct numerical simulation of the equations of motion.

1.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations Wiley, New York.
2.
Woafo
,
P.
,
Fotsin
,
H. B.
, and
Chedjou
,
J. C.
,
1998
, “
Dynamics of Two Nonlinearly Coupled Oscillators
,”
Phys. Scr.
,
57
, pp.
195
200
.
3.
Kozlowsky
,
J.
,
Parlitz
,
U.
, and
Lauterborn
,
W.
,
1995
, “
Bifurcation Analysis of Two Coupled Periodically Driven Duffing Oscillators
,”
Phys. Rev. E
,
51
, pp.
1861
1867
.
4.
Poliashenko
,
M.
, and
Mckay
,
S. R.
,
1992
, “
Chaos due to Homoclinic and Heteroclinic Orbits in Two Coupled Oscillators with Nonisochronism
,”
Phys. Rev. A
,
46
, pp.
5271
5274
.
5.
Chakraborty
,
T.
, and
Rand
,
R. H.
,
1988
, “
The Transition from Phase Locking to Drift in a System of Two Weakly Coupled van der Pol Oscillators
,”
Int. J. Non-Linear Mech.
,
28
, pp.
369
376
.
6.
Pastor-Dia`z
,
I.
, and
Lo´pez-Fraguas
,
A.
,
1995
, “
Dynamics of two coupled van der Pol oscillators
,”
Phys. Rev. E
,
52
, pp.
1480
1489
.
7.
Kapitaniak
,
T.
, and
Steeb
,
W. H.
,
1991
, “
Transition to hyperchaos in coupled generalized van der Pol equations
,”
Phys. Lett. A
,
152
, pp.
33
36
.
8.
Woafo
,
P.
,
Chedjou
,
J. C.
, and
Fotsin
,
H. B.
,
1996
, “
Dynamics of a System Consisting of a van der Pol Oscillator Coupled to a Duffing Oscillator
,”
Phys. Rev. E
,
54
, pp.
5929
5934
.
9.
Hasler
,
M. J.
,
1987
, “
Electrical Circuits with Chaotic Behavior
,”
Proc. IEEE
,
75
, pp.
1009
1021
.
10.
Hayashi, C., 1964, Nonlinear Oscillations in Physical Systems, 1964, McGraw-Hill, New York.
11.
Parlitz
,
U.
, and
Lauterborn
,
W.
,
1987
, “
Period-doubling Cascades and Devil’s Staircases of the Driven van der Pol Oscillator
,”
Phys. Rev. A
,
36
, pp.
1428
1434
.
12.
Szemplin´ska-Stupnicka
,
W.
, and
Rudowski
,
J.
,
1994
, “
Neimark Bifurcation, Almost Periodicity and Chaos in the Forced van der Pol-Duffing System in the Neighborhood of the Principal Resonance
,”
Phys. Lett. A
,
192
, pp.
201
206
.
13.
Venkatesan
,
A.
, and
Lakshmanan
,
M.
,
1997
, “
Bifurcation and Chaos in the Double-well Duffing van der Pol Oscillator: Numerical and Analytical Studies
,”
Phys. Rev. E
,
56
, pp.
6321
6330
.
14.
Guckenheimer, J., and Holmes, P. J., 1983, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York.
15.
Asfar
,
K. R.
,
1989
, “
Quenching of Self-excited Vibrations
,”
ASME J. Vibr. Acoust.
,
111
, pp.
130
133
.
You do not currently have access to this content.